
Servlets

How to use FOP in a Servlet

1. Overview
This page discusses topic all around using FOP in a servlet environment.

2. Example Servlets in the FOP distribution
In the directory {fop-dir}/examples/servlet, you'll find a working example of a FOP-enabled
servlet.

You can build the servlet easily by using the supplied Ant script. After building the servlet,
drop fop.war into the webapps directory of Tomcat. Then, you can use URLs like the
following to generate PDF files:

• http://localhost:8080/fop/fop?fo=/home/path/to/fofile.fo
• http://localhost:8080/fop/fop?xml=/home/path/to/xmlfile.xml&xsl=/home/path/to/xslfile.xsl

The source code for the servlet can be found under
{fop-dir}/examples/servlet/src/FopServlet.java.

3. Create your own Servlet

Note:
This section assumes you are familiar with embedding FOP.

3.1. A minimal Servlet

Here is a minimal code snippet to demonstrate the basics:
public void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException {
try {

response.setContentType("application/pdf");
Driver driver = new Driver(new InputSource("foo.fo"),

response.getOutputStream());
driver.setRenderer(Driver.RENDER_PDF);

Page 1
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

embedding.html
embedding.html
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev


driver.run();
} catch (Exception ex) {

throw new ServletException(ex);
}

}

Note:
There are numerous problems with the code snippet above. Its purpose is only to demonstrate the basic concepts. See below for
details.

3.2. Adding XSL tranformation (XSLT)

A common requirement is the to transform an XML source to XSLFO using an XSL
transformation. It is recommended to use JAXP for this task. The following snippet shows
the basic code:

protected Logger log;
protected TransformerFactory transformerFactory;

public void init() throws ServletException {
this.log = new ConsoleLogger(ConsoleLogger.LEVEL_WARN);
this.transformerFactory = TransformerFactory.newInstance();

}

[..]

//Setup FOP
Driver driver = new Driver();
driver.setLogger(this.log);
driver.setRenderer(Driver.RENDER_PDF);

//Setup a buffer to obtain the content length
ByteArrayOutputStream out = new ByteArrayOutputStream();
driver.setOutputStream(out);

//Setup Transformer
Source xsltSrc = new StreamSource(new File("foo-xml2fo.xsl"));
Transformer transformer = this.transformerFactory.newTransformer(xsltSrc);

//Make sure the XSL transformation's result is piped through to FOP
Result res = new SAXResult(driver.getContentHandler());

//Setup input
Source src = new StreamSource(new File("foo.xml"));

//Start the transformation and rendering process
transformer.transform(src, res);

//Prepare response
response.setContentType("application/pdf");

Servlets

Page 2
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev


response.setContentLength(out.size());

//Send content to Browser
response.getOutputStream().write(out.toByteArray());
response.getOutputStream().flush();

Note:
Buffering the generated PDF in a ByteArrayOutputStream is done to avoid potential problems with the Acrobat Reader Plug-in
in IEx.

The Source instance used above is simply an example. If you have to read the XML from a
string, supply a new StreamSource(new StringReader(xmlstring)).
Constructing and reparsing an XML string is generally less desirable than using a
SAXSource if you generate your XML. You can alternatively supply a DOMSource as well.
You may also use dynamically generated XSL if you like.

Because you have an explicit Transformer object, you can also use it to explicitly set
parameters for the transformation run.

3.3. Custom configuration

If you need to supply a special configuration do this in the init() method so it will only be
done once and to avoid multithreading problems.
public void init() throws ServletException {

[..]
new Options(new File("userconfig.xml"));
//or
Configuration.put("baseDir", "/my/base/dir");

}

3.4. Improving performance

There are several options to consider:

• Instead of java.io.ByteArrayOutputStream consider using the ByteArrayOutputStream
implementation from the Jakarta Commons IO project which allocates less memory.

• In certain cases it can help to write the generated PDF to a temporary file so you can
quickly reuse the file. This is especially useful, if Internet Explorer calls the servlet
multiple times with the same request or if you often generate equal PDFs.

Of course, the performance hints from the Embedding page apply here, too.

4. Notes on Microsoft Internet Explorer
Some versions of Internet Explorer will not automatically show the PDF or call the servlet

Servlets

Page 3
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

embedding.html#performance
embedding.html#performance
embedding.html#performance
embedding.html#performance
embedding.html#performance
embedding.html#performance
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev


multiple times. These are well-known limitations of Internet Explorer and are not a problem
of the servlet. However, Internet Explorer can still be used to download the PDF so that it
can be viewed later. Here are some suggestions in this context:

• Use an URL ending in .pdf, like http://myserver/servlet/stuff.pdf.
Yes, the servlet can be configured to handle this. If the URL has to contain parameters,
try to have both the base URL as well as the last parameter end in .pdf, if necessary
append a dummy parameter, like
http://myserver/servlet/stuff.pdf?par1=a&par2=b&d=.pdf. The
effect may depend on IEx version.

• Give IEx the opportunity to cache. In particular, ensure the server does not set any
headers causing IEx not to cache the content. This may be a real problem if the document
is sent over HTTPS, because most IEx installations will by default not cache any content
retrieved over HTTPS. Setting the Expires header entry may help in this case:
response.setDateHeader("Expires", System.currentTimeMillis()
+ cacheExpiringDuration * 1000);
Consult your server manual and the relevant RFCs for further details on HTTP headers
and caching.

• Cache in the server. It may help to include a parameter in the URL which has a
timestamp as the value min order to decide whether a request is repeated. IEx is reported
to retrieve a document up to three times, but never more often.

5. Servlet Engines
When using a servlet engine, there are potential CLASSPATH issues, and potential conflicts
with existing XML/XSLT libraries. Servlet containers also often use their own classloaders
for loading webapps, which can cause bugs and security problems.

5.1. Tomcat

Check Tomcat's documentation for detailed instructions about installing FOP and Cocoon.
There are known bugs that must be addressed, particularly for Tomcat 4.0.3.

5.2. WebSphere 3.5

Put a copy of a working parser in some directory where WebSphere can access it. For
example, if /usr/webapps/yourapp/servlets is the CLASSPATH for your servlets, copy the
Xerces jar into it (any other directory would also be fine). Do not add the jar to the servlet
CLASSPATH, but add it to the CLASSPATH of the application server which contains your
web application. In the WebSphere administration console, click on the "environment"
button in the "general" tab. In the "variable name" box, enter "CLASSPATH". In the "value"

Servlets

Page 4
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev


box, enter the correct path to the parser jar file (/usr/webapps/yourapp/servlets/Xerces.jar in
our example here). Press "OK", then apply the change and restart the application server.

6. Handling complex use cases
Sometimes the requirements for a servlet get quite sophisticated: SQL data sources, multiple
XSL transformations, merging of several datasources etc. In such a case consider using
Apache Cocoon instead of a custom servlet to accomplish your goal.

Servlets

Page 5
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev

	Servlets
	1 Overview
	2 Example Servlets in the FOP distribution
	3 Create your own Servlet
	3.1 A minimal Servlet
	3.2 Adding XSL tranformation (XSLT)
	3.3 Custom configuration
	3.4 Improving performance

	4 Notes on Microsoft Internet Explorer
	5 Servlet Engines
	5.1 Tomcat
	5.2 WebSphere 3.5

	6 Handling complex use cases


