
353

Chapter 26 C H A P T E R T W E N T Y - S I X

Scott Ambler on Getting Past Obstacles

Scott Ambler helped lead the software world through two revolutions: first in the move to object-ori-
ented analysis and design in the 1990s, and then in the adoption of agile practices in the decade that
followed. He’s spent a lot of his career focused on making enterprisewide changes, and doing that
successfully means having to overcome obstacle after obstacle. We wanted to hear how he managed
to make change work on that scale, especially when people around him weren’t sure that it would
work.

,ch26.20387 Page 353 Thursday, February 12, 2009 3:10 PM

354 C H A P T E R T W E N T Y - S I X

Jenny: We’re interested in talking to you about your experience, and how you came to
know about how teams work together.

Scott: Right now I’m the practice leader for agile development for IBM Software Group.

For the most part, I help customers become more agile and more effective at what they’re

doing. I also work with IBM itself. A lot of that is helping people to work together more

effectively, often in teams. I’ve written a few books, and done a lot of work in the agile

community. I’m the guy behind Agile Modeling, the Agile Data Method, and the Enter-

prise Unified Process.

As far as my background in teaming, it’s a lot of hard-earned experience, I guess. Software

is developed in teams, for the most part. As a result, you either learn the easy or the hard

way—and I guess for me it was the hard way—about how to work in teams.

Jenny: Getting companies to adopt the kinds of practices and techniques you talk about
means convincing a lot of people to change the way they do their jobs—and the way they
think about those jobs. How do you go about making those kinds of large changes?

Scott: I think a lot of it is just trying to get stuff done. Software’s hard, software’s com-

plex, and you need to work with people. I think the first obstacle you have to overcome is

yourself, in recognizing that you can’t do it all. You’re going to need help, and you’re

going to need to learn from others.

As far as obstacles go, a big one is being able to observe when the team is not working

well, because it’s not always obvious. If people are shoving each other, then something

bad might be happening. But I worked on one team where an observer from the outside, if

they were to look at us, would think we were about to kill each other. But for whatever

reason, the way we worked together best was to argue. We could argue something out,

and we’d be shouting sometimes—you’d think we were about to kill each other. What

was happening was that we were working together really effectively. Some of it was just

because we’d grown to respect each other. And even though we’d never really talked

about it, we knew that our process was to talk about it and argue things through. Invari-

ably, nobody had it right going into the discussion, but through the argument we came to

a much better conclusion to whatever we were working on.

My point is that you can’t always tell when a team was dysfunctional. Because in that

case, an outsider would have thought we were dysfunctional, but we were actually phe-

nomenally effective. If there’s negative shouting and screaming, that’s a problem. But

sometimes you can be on a team where everyone’s trying, but nobody’s communicating,

and nobody’s reaching their goals. It might not be explicit, but there’s a slippery slope that

occurs where everybody can work really hard for a long time, but in total you’re not

accomplishing much. The easy analogy is that during the day you’ve got people digging a

hole, and at night other people are filling it up. Everybody’s working really hard digging

and filling holes, but in the end nothing of value is actually occurring.

,ch26.20387 Page 354 Thursday, February 12, 2009 3:10 PM

S C O T T A M B L E R O N G E T T I N G P A S T O B S T A C L E S 355

That can happen on dysfunctional teams, and it’s not always obvious that it’s happening,

particularly if the team is large and distributed. When you haven’t bonded and you’re not

close, it’s difficult to observe that.

Andrew: So the way that the team communicates can be an obstacle, not just to getting
the work done if the communication is problematic, but even to recognizing whether or
not a team is effective. And it sounds like personality conflicts can be a real problem. If
the team has the right stuff technically, but the people don’t mesh for whatever reason, it
can keep work from getting done. I’m guessing that someone who was very introverted
and avoided conflicts whenever possible would have had trouble joining your team,
right? Even if they were perfect, technically, to fill a slot that’s open on your team, I have a
feeling that they’d be lost. But sometimes you end up in a situation where there’s a
personality mismatch. What would you do about it?

Scott: So say there was an introvert that ended up getting caught in the crossfire, or how-

ever you want to describe it. Someone would have to notice. The introvert would have to

step up and say, “You know what? I really don’t like this.” But that would be really hard

for them. So say that’s not happening. Then somebody else would have to notice, which is

easier said than done. In that environment, our manager would have noticed.

Andrew: Do you think it’s the manager’s job to notice?

Scott: I would hope so. A good manager or team lead should be responsible for looking

out for everybody on the team, which is easy to say but hard to do in some situations.

Whoever’s in the team lead role or the manager role should be looking out and asking

themselves, “How is this person doing? How are they fitting in? How can I help them?

What problems are they running into?”

And they need to have techniques to help them notice these things, and status reports

might not do it. The introvert probably wouldn’t write in a status report, “I hate working

with these guys. I’m not getting things done, and I’m not fitting in.” The team lead needs

to observe that.

Say that someone observes that this person is running into trouble and not fitting in well.

I would hope that person would bring it up amongst the team, or point it out to the extro-

verts who are shouting at each other: “Hey, this is working for you, but Sally over here is

really having a rough go of it. Can you try to bring her into the conversation, and maybe

calm things down and try to find ways to work with her?” Everyone else on the team

would have to find different ways to work with Sally, and Sally would have to maybe step

up a bit. We’d all have to take the opportunity to learn; which, to me, is the mark of a pro-

fessional. You should always be trying to improve how you’re doing and how you work.

In particular, you’ve got to get good at collaboration, working together with others and

working on a team.

For technical, this can be a challenge. This industry rewards people for their technical

skills, and many of us are really geared for being technical, but we often shortchange the

softer “people skills,” or whatever you want to call them. As a result, we don’t focus on

them as much. And those are important things, at least in software development. People

,ch26.20387 Page 355 Thursday, February 12, 2009 3:10 PM

356 C H A P T E R T W E N T Y - S I X

are a primary factor of success on a software team. The way you act with each other mat-

ters a lot more than whatever cool new technology you’re working with today. This is

something we don’t appreciate as much.

Andrew: I think a lot of people would be a little bit surprised sometimes to hear that,
since you’ve spent so much of your career talking about architecture, development, and
practices: object-oriented development, UML and software modeling, agile development,
planning, and process in general. But when asked about the biggest problems that face
teams, the ones you bring up are people-based, how people work together. Were you
surprised to figure that out? Or is that something you knew from the beginning?

Scott: Yes, I was surprised, but I figured that out fairly early, I guess through observation

and experience. I figured out pretty early that there’s more to it than just technology. I

didn’t actually fall into this people stuff right away. I guess my first step was to realize that

we need to look past technology to process and practices. When I went back to school for

my master’s degree, I started focusing on Computer Supported Collaborative Works

(CSCW), which is a fancy academic term for groupware. I guess that’s what gave me an

appreciation for software people issues, because that’s what CSCW is all about. In this

case, how do we use technology to get people to work together more effectively? That’s

how I became more aware of these software issues.

Jenny: You’ve also spent a lot of your career talking and writing about practices. Have you
ever found that the practices themselves that people are using can help you get past
those obstacles to team building that you were talking about? Or, on the flip side, can
those practices themselves be an obstacle?

Scott: In non-solo development, techniques like pair programming—or from Agile Mod-

eling, modeling with others—you can start to get that recognition that you have to work

together on a regular basis. A lot of people in the agile community practice what they call

“promiscuous pairing,” where not only do you work in pairs; you swap pairs on a regular

basis. When you do that, not only does the quality of your work improve, you learn a lot

from others from working with them. By swapping pairs on a regular basis, that really

forces the issue, and the team has to learn these softer communication skills to survive in

this environment.

But like you pointed out, that in and of itself can be a challenge, and not everybody can

work this way. This is one of the challenges that the agile community faces. In a way, the

software skills that we’re talking about and trying to improve upon are a barrier to entry

to some people. Some people really do just want to focus on the technology, and really do

want to work by themselves. And that’s OK. That, I think, is something that an organiza-

tion or team needs to recognize: that not everybody’s the same, and some people just

don’t want to work on teams. There are some jobs where it is solo work. I think that’s an

important observation.

Andrew: Throughout doing the research for this book, we’ve talked to many people who
have told us about agile practices and agile in general. And everyone seems to have a
slightly different definition of what agile actually means. Can you tell us a little bit about

,ch26.20387 Page 356 Thursday, February 12, 2009 3:10 PM

S C O T T A M B L E R O N G E T T I N G P A S T O B S T A C L E S 357

how you got started with agile? What kind of project did it solve? And also, what kinds of
problems did it cause? Because nothing’s a silver bullet. We’d love to hear your thoughts
on that, and on what agile really means to you.

Scott: Definitely. On the Agile Modeling site (http://www.agilemodeling.com/) I’ve got my

definition. I’ve actually got it on the screen here—let me read it to you: “Disciplined agile

software development is an iterative and incremental (evolutionary) approach to software

development which is performed in a highly collaborative manner by self-organizing

teams within an effective governance framework with ‘just enough’ ceremony that pro-

duces high-quality software in a cost-effective and timely manner which meets the chang-

ing needs of its stakeholders.”

Now, there’s some “motherhood and apple pie” stuff in there. But I think those are all

important features, and a lot of it is teamwork-based. So, for example, all of the talk about

working in a highly collaborative manner and on self-organizing teams, that’s more obvi-

ous from a team perspective. But one of the things that a lot of agilists don’t talk about,

which I think is unfortunate, is the governance framework aspect to it.

No team works in a vacuum. There’s an overall organization and environment that the

team is working in. And the work of that team needs to be governed, and governance in

some ways can be a good thing. Unfortunately, it’s not always done right, which is why

some software professionals cringe when you use the term governance. But you do want to

make it lean, and you do want to make it as effective as possible.

Working closely with your stakeholders is absolutely critical, and that’s a teaming issue. In

the agile world, we talk about the “whole team” concept. That may or may not be a prac-

tice, depending on your point of view. People should have enough skills on the team to

get the job done, and you’re going to work together to do whatever that job is. And that’s

a very good thing. But what’s often missed is that someone needs to keep an eye on that

whole team, and make sure that whole team is actually staying on course and whatever it

is they’re trying to achieve actually makes sense in the overall organization. That’s some-

thing I think isn’t discussed enough in the agile community.

Andrew: Those two things—governance and self-organizing teams—sound like
opposites to me.

Scott: They’re really not. Everybody is governed, and this is something that often gets

missed. “Self-organizing” doesn’t mean that you’re out of control and doing your own

thing. It means that the team members themselves decide how to meet their goals. But the

goals themselves, the resources they use, the time frame they have to do it, those are gov-

erned by the organization. Somebody’s paying the bills. Just the financial issue alone is an

issue, because if the organization doesn’t like what your team is doing, they can pull the

plug. Now, that’s a harsh governance mechanism, but it’s fairly realistic. How did the team

start up? If it’s a software development project, there must be some kind of goals you’re

trying to achieve. There has to be an initial vision. And setting that vision, the mission—

that’s a form of governance as well. The rights and responsibilities of the team, the report-

,ch26.20387 Page 357 Thursday, February 12, 2009 3:10 PM

358 C H A P T E R T W E N T Y - S I X

ing chain: that’s governance. For example, the junior programmer might not have the

same decision rights as the senior technical lead. That’s a form of governance as well.

So governance is given short shrift, I think, in many situations. It’s always happening, but

we don’t recognize it. And it’s a shame if we ignore it, because one of the things I see in

the agile community is that we’re so paranoid about bureaucracy and wasted time that

things like governance will instantly be beaten up. “We don’t need any governance; it’s a

waste of time!” Well, no. Bad governance can be an obstacle to leadership. Let’s try to be

effective at governance, because the value of governance is to help us make good decisions

and go in the right direction. Let’s keep the baby and throw out the bathwater.

Andrew: So a team can be governed by the vision, by the goal of the project, as well as by
the expertise and limitations of the team and the company. Now, I’ve personally seen
plenty of software projects go off the rails because the project governed the vision, and
not the other way around. I guess that’s one way you can describe scope creep.

Scott: Yes. The vision should evolve over time—and rightly so, because the situation

evolves, too. But what happens, for whatever reason, is that long before the project actu-

ally starts, somebody has this idea that you need to do X and achieve whatever goals, for

whatever business reason. There’s always this long list of opportunities that an organiza-

tion has. But there’s only so much funding, so they have to choose what they want to do,

and hopefully do it effectively. The reason for that project really does direct the effort,

because you really want to make sure that you’re achieving those goals. And if the goals

are changing, you want to make sure they’re changing the right way, and you want to

manage that evolution. You should be doing a reality check every so often, which doesn’t

happen as often as it should.

I ran a survey through Dr. Dobb’s a year or two ago about how people define success,

because we don’t have many numbers on this. It’s my philosophy that if a project is in

trouble, someone should actually say, “Hey, this project is in trouble!” Somebody has to

make a decision about how to get this team out of trouble. If nobody knows how to get

the team out of trouble, we need to cut bait now, and stop throwing good money after

bad. Now, that’s my philosophy, but I didn’t know how many other people thought this

way. So we asked. And what we found was that something like only 41% or 42% of

respondents said that in their organization, if a project is in trouble, it’s considered a suc-

cess to cancel that project—which is a real shame, because if I recognize a project is in

trouble, I want to get it out of trouble as soon as I possibly can. I would consider stopping

a project as early as possible. That’s obviously not a good idea, but I’d rather waste half a

million dollars and learn the hard way than waste three or four million dollars and learn

the hard way.

The only way that you can actually make that work is to monitor what’s going on, and ask

these sorts of questions. Is this team still succeeding? Does this project still make sense?

Because teams can become blind to that. A team can be phenomenally successful in what-

ever the scope of the project is. But the environment could have changed, and they may

,ch26.20387 Page 358 Thursday, February 12, 2009 3:10 PM

S C O T T A M B L E R O N G E T T I N G P A S T O B S T A C L E S 359

not have recognized that. Whatever reasons there were to start that project may have

changed, and we need to stop it.

So, for example, in the fall of 2008, we had the financial crash. For a lot of financial insti-

tutions, their business environment changed dramatically from September to October. I’m

sure that some of them put some projects on the shelf, because the business environment

changed so radically that some projects no longer made sense. It’s no fault of the develop-

ment team at all. Still, why throw good money after bad?

Andrew: The idea of aligning the project to the company, of having somebody looking out
to make sure the project we’re building is the right project to build, reminds me of a
problem that I suspect a lot of agile teams face. But I’ve never heard anyone talk about it,
and maybe you can help shed some light on it. One of the bread-and-butter practices that
a lot of agile teams follow—and, I think, a good one!—is to bring a business
representative into the team. Sometimes this is part-time, sometimes it’s even full-time. I
can see that embedding a stakeholder or business person in the team itself can do really
good things for communication and information sharing, and for making sure the scope
doesn’t creep in the wrong direction. Now, to be honest, I’ve never really seen this done
all that well, because I’ve rarely come across stakeholders who feel that they have that
kind of time, for better or worse.

But for a team that does manage to embed a stakeholder into the team, I worry that they
may run into a problem where they also start to be affected by that very same blindness
that you just mentioned. If you bring the stakeholders from the business side into the
team, and everybody suffers from the same blindness, then who’s looking out for the
project’s goals to make sure they’re still aligned with what the company needs?

Scott: There are a couple of things there. Sometimes the outsiders go native. It doesn’t

matter who you’re bringing into the team. If you work closely with an existing team

enough, you’ll start relating to that team, start relating a little bit less to where you came

from, which in this case is the business side of things. And this can be a problem.

One of the risks of the “whole team” concept is groupthink. The basic concept of

groupthink is that if a group of people work together long enough—and this can be sev-

eral months—they start to think the same way, and start to become blind to the same

issues. Psychologists sometimes talk about this in relation to risky decision making. For

example, you might not be willing to bet $100 on a horse race. But if you’re out with your

friends, and one of them bets $100 on a horse, and then another bets $100 on a horse,

then betting $100 starts to seem less risky to you. So the entire group together would

together make what they perceive as a very risky decision, but because you’re in a group,

suddenly that risk has gone down. And that sort of thing happens as well.

So there are these interesting team dynamics that you have to watch out for. Nothing’s

perfect, right? And this is something that governance efforts have to watch out for. The

challenge with governance—and this is the reason I think that people are bitter about IT

governance—is that a lot of organizations facing a problem like this will go into “com-

mand and control” mode. The people doing governance will think that they’re managing.

They’ll try to direct the project, and they’ll get too actively involved, or they’ll place too

,ch26.20387 Page 359 Thursday, February 12, 2009 3:10 PM

360 C H A P T E R T W E N T Y - S I X

much of a burden on a team. They’ll start asking the team to produce regular status

reports or attend the monthly control board meeting, or they’ll have these milestone

meetings every couple of months to ask the team to justify what they’re doing. That

throws a lot of extra unnecessary burden on the team. Good governance should be about

enablement and about motivation. It shouldn’t be about command and control, and it

shouldn’t be a burden. Obviously, there will be a little overhead, but it shouldn’t be too

much. If it’s too much, the governance effort becomes detrimental, and that’s a very seri-

ous challenge.

Jenny: So how do you approach that challenge? What’s the first thing you do to make sure
that you’re not forcing a team to have to put up with detrimental governance?

Scott: You want to automate as much as possible. Per Kroll and I wrote a white paper on

this about a year and a half ago called “Lean Development Governance”; the philosophies

there were to automate as much as possible, to make it as easy as possible to report accu-

rate metrics, and for the person doing governance to understand that different teams are

in different situations. The people doing governance need to be flexible, and understand

that a team of five people will work differently from a team of 50. A team building a data

warehouse works differently from a team building a website. Your team building a website

will work differently from my team building a website. We’re different people, and we’re

different teams, even if we’re building similar things with the same technology. And as a

result, those teams need to be managed in different ways.

A very common mistake that governance people make is that they try to inflict the same

process and the same governance structure on different teams, and it just doesn’t work

because different teams need to be governed in different ways. The goals might be the

same, but the way that you reach those goals will be different. The way I like to say it is

that you should be aiming for repeatable results, not repeatable processes. But that can be

a challenge for the more rigid and bureaucratic among us.

Jenny: That’s interesting to me, because when you talk about engineering a lot of
automated solutions to deal with this stuff, that can actually get to be as heavyweight as
writing a lot of documents. Creating a lot of test frameworks and putting automation
scripts in place, and putting all the practices in place that you need to automate your
quality activities upfront, and the engineering effort needed for that, seems like it can be
very heavy.

Scott: That’s a very good observation. If you’re toolsmithing all of your own tools, it is

quite heavy. This, I think, is another challenge to the agile community. Many agile teams

rely on open source software, and for very good reason. But there are limits to that, and

one of the limits is one of integration, and particularly one of governance and accurate

metrics reporting. You need to go beyond some of the agile rhetoric.

For example, there’s an example called Jazz, and if you go to http://jazz.net you can down-

load demo copies of it. But in Rational Team Concert, which sits on top of Jazz, we auto-

mate all of this. All of the stuff that agile teams are hand-jamming—their defect trend

reports and their burn-down charts, whatever it is that they may or may not be reporting

,ch26.20387 Page 360 Thursday, February 12, 2009 3:10 PM

S C O T T A M B L E R O N G E T T I N G P A S T O B S T A C L E S 361

on—that they’re either doing manually, all of that gets generated automatically in real

time. So there’s no real curtain there. But that’s because it’s already implemented.

If you had to implement it all yourself, it’d be a phenomenal amount of work. So there’s

limits to some of the things we see the mainstream agile community doing right now.

There are some challenges there.

No development team in a bank or an insurance company would think of developing their

own compiler. That’s something you buy or download free of charge. So now you’re start-

ing to see better-integrated tools that are providing the information you need to govern

effectively. But you definitely don’t want to be hand-jamming all this and implementing it

yourself, because that’s a huge burden.

Andrew: We’ve been talking a lot about obstacles to building software, but we’d really
love to end on an upbeat note. Can you tell us about a great team that you’ve worked on?

Scott: One of the best teams I was ever on wasn’t a software team. It was at my karate

dojo. I trained in karate for about ten years until an injury sidelined me, which is unfortu-

nate, but that’s the way it goes. There are some very interesting philosophies that a lot of

teams can benefit from. One of the philosophies or rules in North American karate is the

concept of belts: you go through a white belt, then a yellow belt, and so on, all the way up

to black belt. And one of the rules was that somebody who’s a lower belt, somebody who’s

not as experienced, can always go up to someone with a higher-ranking belt and ask them

for help. That person is responsible for helping them to the best of their ability. Now, part

of that help might be to say, “I don’t know how to describe this to you, but this person

over here can help us, so let’s work on this and get better at it.”

The willingness to ask for help is critical. But the willingness to give help is critical, too,

and one of the principles of martial arts is that you learn more through helping and teach-

ing than you do by just trying to work things through by yourself. This is something that

many people can relate to.

If it’s just orange belts in the room at the time you can still work together on things, and

help each other achieve what you need to achieve. That willingness to work with each

other that I learned in karate, I try to apply on software teams. It’s interesting to me in the

agile community of doing coding katas and running coding dojos. I think a fair number of

people are bringing martial arts ideas into software development. The martial arts have

been around for a long time, and they’ve figured out how to teach people. Because it’s

pretty much all voluntary: as an adult, you go to a martial arts class because you want to

learn, or get more fit, whatever your goal is. But you’re there because you want to get

better.

Andrew: It’s really interesting to me that you say that. I’ve been studying another
Japanese martial art, aikido, for about 10 years. And one thing I really like about aikido
training is that everybody always trains together. And teaching more junior people is
considered an important part of your training, especially as you get more senior. One of
the things that I’ve found over and over again—I didn’t expect to find this, but I did—is

,ch26.20387 Page 361 Thursday, February 12, 2009 3:10 PM

362 C H A P T E R T W E N T Y - S I X

that I actually learn more from teaching other people than I do from being taught by
other people.

That’s another thing that I think translates well to the programming and software world.
For example, when Jenny and I wrote Head First C#, our book on teaching people to
program, I learned a lot by figuring out how to explain some of the concepts to somebody
new. I mean, I definitely understood, say, core principles of object-oriented development
going into the project. But I really feel that figuring out how to explain to a new C#
programmer why they care about encapsulation, or the difference between interfaces
and abstract classes, in a way that they’ll actually understand and connect with, brought
me to a whole new level of understanding.

And I found that this all translates directly to my job. I found that as a manager,
especially, when part of my job is to train people on my team and help them not just do
their jobs but develop professionally, I’d learn from them, often unintentionally but
sometimes intentionally. Sometimes someone who’s only been programming for a few
years has some really good ideas that I’ve never heard before. So I definitely relate to
what you’re talking about.

Scott: It’s interesting, especially if you look at some of the pair programming research into

different combinations. If a novice pairs with an expert, for example, what they found is

that both people benefit. Obviously, the novice will pick up a lot from working with the

expert. But the expert learns from answering those questions. And the question might be

something straightforward: “Why are you doing that?” Well, it’s because … wait, why am

I doing that? It forces you to think through some of your practices, which is an opportu-

nity to improve. “This really doesn’t make a lot of sense, and maybe I can do it better.”

Andrew: Wow. What you just said is almost exactly the same as something Jenny and I
wrote about in our first book. Actually, I’ve got it right here—it’s from the section that’s
about pair programming teams that have a junior member and a senior member: “Often,
a junior team member will ask a seemingly ‘naIve’ question about the code that turns out
to identify a serious problem. This is especially common with problems that the senior
member has been living with for so long that she no longer notices them. Sometimes the
extent of a code problem only becomes clear when it is explained to somebody else.”
That sounds exactly like what you were just talking about.

And that begs the question for me: why is it so damn hard to get programmers to do it? Of
all the practices, agile or otherwise, that I’ve had my own teams work with and talked to
other people about, pair programming is the one practice that I’ve had an almost
impossible time getting teams to adopt. It’s even harder to get them to do that than to
start doing automated unit tests and test-driven development.

Jenny: I think there’s sort of this intuitive notion that having two people on the same thing
is just inherently wasteful, and people just don’t want to do it.

Scott: There’s a lot of that. Also, people just aren’t comfortable with it. There’s something

to be said for being at your desk by yourself, doing your own thing. It’s interesting; pair

programming’s tiring. You do it for five or six hours, and you’re exhausted, because

you’re actually working.

,ch26.20387 Page 362 Thursday, February 12, 2009 3:10 PM

S C O T T A M B L E R O N G E T T I N G P A S T O B S T A C L E S 363

One of the things I do, and it’s a bit harsh, is to really force the issue. My technique is that

I’ll bring the idea up with the team: here’s what it’s all about, here’s how you do it. But it’s

hard. We’ll talk it through, and talk about why it’s hard. And what I’ll get the team to

agree to is to try it out for a month. We’ll swap pairs on a regular basis—every day, you

should work with someone new, not whoever you worked with yesterday. We’re going to

talk it out. We’re not going to tolerate solo programming for that entire month. And at the

end of the month, then we’ll make the decision about whether or not we want to keep

doing it. And what I’ve found is that by forcing the issue, and by really keeping people’s

noses to the grindstone, is that by the end of the month very few people want to go back

to solo programming. But it takes awhile. It’s a “no pain, no gain” kind of deal—I’m sure

there’s other rhetoric, but sometimes you’ve just got to suck it up and do it. And pair pro-

gramming is one of those things where you just have to force the issue for a while.

Because it is uncomfortable at first. It feels strange, and for many people it’s outside their

comfort zone. So you’ve just got to do it. What I’ve found is that on the teams that choose

to do it, very few—maybe 5%—of the people go back to solo programming. But it takes a

month.

Andrew: Do you think that’s because it’s hard for someone to put himself in the mindset
of someone who’s actually doing it if he’s never done it before?

Scott: I think so. Pair programming is initially a hard thing, but there are a lot of benefits

to it. There’s an intrinsic benefit that’s very hard to observe directly, and that’s the prob-

lem. It’s one of those things where it’s easy to say, “Well, there are two people working at

the same desk, so they’re half as productive.” So it’s easy to knock if you’ve never done it.

But once you’ve experienced it, it’s pretty good.

Andrew: Do you think that’s something that might be a general rule for getting teams to
accept changes? That once they’ve tried it, they won’t want to go back, no matter how
much whining there was at the beginning?

Scott: The general conclusion I’d draw is that if there’s something where there’s so much

discussion out there and so much evidence that it works, then it’s worth trying. I’m not

sure if you’re at the point of your life where eating a lot of bran is a good thing—eventu-

ally, you’ll get there, believe me! It’s not something you want to do to begin with. But

after awhile, you think, “Eh, that’s pretty good for me.” So eventually you’ll need to just

tough it out and do it.

,ch26.20387 Page 363 Thursday, February 12, 2009 3:10 PM

364 C H A P T E R T W E N T Y - S I X

,ch26.20387 Page 364 Thursday, February 12, 2009 3:10 PM

