
xiii

Chapter

Why Beautiful Teams?

WE’VE BEEN ON A LOT OF DIFFERENT TEAMS OVER THE YEARS, IN A LOT OF DIFFERENT COMPANIES AND

building a lot of different kinds of projects. And over the course of writing books, articles,

and blog posts about how to make projects run better, we were always nagged by a ques-

tion. It always seemed like it was our job to come up with prescriptive, “best” ways to run

software projects: how to plan the projects, how to build the software, and how to make

sure that it doesn’t break. But the more we wrote and the more we talked to people, the

more we questioned this idea.

We started down that path after writing our first book, which we thought of as a practical

recipe book for running successful software projects. We’d done a lot of research, experi-

mentation, and real-world project work over the years to find practices that worked for us:

ways to plan software projects, techniques for developers to write better code, and ways to

test the software. We took the ones that worked best for us and packaged them up into as

lightweight a book as we could come up with. We’ve gotten a lot of great, overwhelmingly

positive feedback about it over the years, and a lot of people have told us that they use it

every day.

And that’s where things started to go wrong for us.

,foreword.17193 Page xiii Thursday, February 12, 2009 3:09 PM

xiv W H Y B E A U T I F U L T E A M S ?

Ironically, we fell into a trap that we actually wrote about in that book: we started to get a

kind of tunnel vision. We saw this particular set of practices as the “successful” practices.

We never intended to say that there was only one way to plan out your project, or to esti-

mate it, or to do a code review, or to test the software. But what we found, as we started

getting out into the world and talking to more and more software people, is that we were

getting pigeonholed. People would say, “Oh, Stellman and Greene—you’re the Wideband

Delphi people? I always use that to estimate!” (Seriously, people actually said that to us!)

Or, much worse, they’d tell us, “Your book talks about requirements specifications, and I

never use them. But I develop software just fine. You must be wrong!”

Practices are cold. Practices are theoretical. You can sit and talk about the virtues of one or

another, and have hypothetical arguments about whether they’ll work in one situation or

another. We’ve done our own share of arguing about that ourselves, talking until we’re all

blue in the face about when is the correct time to do requirements gathering, how to

make a project more or less agile. Those kinds of things are really where people draw bat-

tle lines.

But it’s not where the meat of the work happens, honestly. How you make those decisions

has an impact on the project, certainly, and sometimes a big one. But it’s not nearly as

important as who you have on your team: how skilled they are, and how well they work

together. That’s when we realized that practices are only one aspect of building better soft-

ware. And although it’s the aspect we’ve spent the most time studying and dealing with, it

took us a long time to realize that it’s usually not the most important aspect.

The more we opened up and let other people talk about their own experiences without

trying to impose our own practices and views on them, the fewer arguments we got into.

And the more we talked this over, among ourselves and with other people, the more we

started thinking about four distinct “buckets” (for lack of a better word) that these conver-

sations fell into: people (who’s on the team), goals (what brings them together), practices

(how they build the software), and obstacles (what gets in their way).

So we started looking for ways to get people to open up about their own projects, and to

listen to each other about what they’ve learned. We put together a talk about best prac-

tices—because that’s what we wrote about and what we knew best—and tried to explain,

in as general and non-prescriptive terms as we could think of, how to use them to make

your projects run better. We naively thought that people would be excited to hear about

what we learned, both in writing our book and in running our own projects. We’d talk

about the kinds of pitfalls they’d avoid, and we’d give them the tools to avoid them

(“Look, here’s one way you can run a productive estimation session!”).

It was a disaster. One talk comes to mind as particularly bad, although not too much

worse than many others that we gave. We were invited to give a presentation for a brown

bag series at a major Internet company’s New York office. We started in on the talk, going

through the kinds of problems that software teams typically face, and outlining the prac-

tices that we found to be useful to prevent them. We could see the mounting boredom

and even frustration on the faces of the developers. They were mostly young, the majority

,foreword.17193 Page xiv Thursday, February 12, 2009 3:09 PM

W H Y B E A U T I F U L T E A M S ? xv

under 30, and by the time we were halfway through the talk most were checking their

PDAs and laptops. Some people even got up and left. And when we got to the Q&A ses-

sion at the end, we found out where their heads were. One programmer, a large guy with

a long gray beard, challenged us when we mentioned agile project planning: “Agile means

that you don’t write anything down, you just start coding immediately.” Everyone nodded

their heads. We tried to redirect that—“No, that’s not what agile necessarily says!”—but it

didn’t matter. Our message wasn’t getting through, and we were clearly wasting every-

one’s time.

We shouldn’t have been surprised that we were met with a lukewarm (at best) reception.

After all, we’d sat through our own share of networking activities (project management

group meetings, architect SIG meetings, software process network meetings…). And for

every one that featured a really memorable talk or discussion, there were literally a dozen

that boiled down to an advertisement for a consulting company, or a book, or a profes-

sional product or service of some kind, and left us completely cold.

So we reflected on the criticism about agile we’d gotten at that talk. And to our surprise,

we realized that he wasn’t wrong to criticize us, even if we disagreed with him on the

facts. Yes, the criticism stung at first, and we really had to take some time to figure out

why the talk ended up the way it did. But in the end, his criticism ultimately showed us

what was wrong with our approach. There is no “best” practice—at least, none that we know

of that will guarantee success every time. Whether or not a particular tool or technique

works depends on the circumstances: the project, the people, and all sorts of mushy,

messy stuff that you just can’t quantify or prescribe. Now, that’s not to say that we don’t

care about process. We’re not distancing ourselves from the practices that we use, and that

we write about. In fact, just the opposite: we still use them every day, we still write about

them, and we still train other people to build better software using them, because they

really do work—in the right situation, for the right project, and with the right people. But

sometimes the way to get something done is to do anything but the “right” thing. Some-

times you need to just do whatever works.

Growth for us came from realizing that there really are a lot of ways to run a project. And

even though we found some practices that we’re very comfortable with, there are times

when they’re not appropriate. We’ve had to get a lot more flexible over the years with our

own approaches to building software, and how we work with our own teams. The reason

we had to do that is because some of our projects failed. Not many, but some. And when

they failed, that’s when we learned the most.

That’s what set us down a new path. We tried to figure out what made some projects work

while others crashed and burned. It was hard to figure out one particular cause at first,

and we suspected that there was no single answer. And when we started talking to people

around us, people we knew, we started to hear the same thing over and over: people

talked fondly about one project or another that really stuck with them, and they wanted

to share their “war stories” about the terrible manager they had, or the horrible situation

they faced, or another problem they overcame. In fact, simply asking people about teams

they’d been on often got them to reflect on their own careers, and on their own impact on

,foreword.17193 Page xv Thursday, February 12, 2009 3:09 PM

xvi W H Y B E A U T I F U L T E A M S ?

the people around them. And to our surprise, this seemed to be consistent with everyone

involved in every level of software development: from the junior programmer who’d been

out of school for only a year or two to the CTO who had worked his way up through the

ranks from being a junior programmer years before.

Why These Contributors?
We started this project with one core assumption: the more you know about how different

people run their projects, the better equipped you are to run your own. We started out by

going to people who we knew personally, from our own teams and people we’d met at

conferences and from being around the software development world. We were surprised

at the diversity of opinions just among the people who we knew. We were also surprised

that we didn’t agree with everything they said—and that when we did, we were still able

to see the truth in it.

That’s when we came up with a cohesive goal for the book: to draw as many different

opinions from as many different areas of software development as we could, regardless of

whether or not they meshed cleanly with our own or even with each other. Yes, this

would almost certainly mean that there would be contradictory ideas. But we decided that

not only is that OK, but in fact it’s a benefit. (It’s a feature, not a bug.) It showed us that

even though ideas are contradictory, they still work in different situations. All projects are

unique, all teams are different. It would be very odd if there really were a single answer.

There’s room for all of these opinions, and there are situations in which any of them can

be the right way to go.

Now, that’s not to say that there are no wrong answers. In fact, just the opposite is true,

which is why we included stories in this book about the teams that are not successful. Just

as the right decision at the right time can make all the difference in a successful project,

sometimes people can be truly misguided when they build software. They choose the

wrong practice or path: for example, good documentation can turn bad when it’s onerous

and not used. But projects can fall off the other side of the spectrum, too, where people on

the team don’t plan at all, and everyone goes in a different direction. And that’s what the

cautionary stories in this book demonstrate: teams that started out with the wrong goal,

included the wrong people, applied the wrong practices, or simply hit an insurmountable

obstacle.

We could never have written a book that does that by ourselves. We’re very limited in

what we know. Everybody is. And that’s why we cast as wide a net as possible, talking to

people whose opinions we respect. The many people who contributed to this book repre-

sent the real spectrum of projects that people across the whole industry take on. And

while many of the opinions and ideas that you’ll read about differ from our own—in some

cases, they’re completely opposite—we learned a lot from each and every one of these

contributors. We think that you will, too.

This book includes stories and interviews with veteran team leaders from all around the

software industry. We recruited contributors from as many different industries and areas

,foreword.17193 Page xvi Thursday, February 12, 2009 3:09 PM

W H Y B E A U T I F U L T E A M S ? xvii

of interest as possible: from defense to social organizing, from academic research to video

game development, from aerospace and defense to search engines, and from project man-

agers to “boots-on-the-ground” programmers and system admins. There are people who

we met over the course of our educations and work lives. There are contributors from a

wide range of companies, including people who worked (and, in some cases, still work) at

NASA, Google, IBM, and Microsoft. We were especially surprised and pleased when we

got contributions from people like Grady Booch, Barry Boehm, Steve McConnell, and Karl

Wiegers, whose writing and teaching were central to our own understanding of how soft-

ware is built. We felt honored to work with them and other people in this book who you

may not know as well, but who are also doing amazing and innovative things for software

development. We’re especially grateful for contributions from Tim O’Reilly (whose pub-

lishing company printed this and our other books), Scott Berkun (who we’ve known for

years and who not only contributed a great essay but also interviewed Steve McConnell),

and Tony Visconti (a legendary music producer who took the time to talk to us about his

own process).

Frankly, we’re still amazed that we were able to get such a wide-ranging, knowledgeable,

distinguished, and talented group of contributors. But even more surprisingly, not a single

contributor asked to be paid. Instead of dividing the royalties from this book among the

contributors, we have the privilege of donating them to PlayPumps International, an inno-

vative charity that digs wells to deliver clean drinking water to schools and villages in rural

sub-Saharan Africa. PlayPumps is more than a charity; they’ve had to do their own share of

engineering and innovation. You’ll learn more about them and their mission (and some-

thing about teams, as well!) in our interview with Trevor Field, the founder of PlayPumps.

Every one of these contributors has something interesting, important, and, most signifi-

cantly, useful to say about teams: how they work, how to build them, and how they break

down. Each of them is a veteran team leader in his or her own right, with successes and

failures under his or her belt. In some cases, we were surprised and even shocked by the

stories they had to tell. And every single one is entertaining. The sum of all of these parts

amounts to an experience that no single person could cobble together.

Before we delve into the four areas we chose to examine—people, goals, practices, and

obstacles—we’d like to start with our interview with Tim O’Reilly because he touches on

themes that you’ll see over and over again throughout the book. As you’re reading it,

keep an eye out for each of those four things. When we talked to Tim, he was able to

make a lot of these concepts concrete for us, putting words to a lot of the ideas that had

been swirling around in our heads after editing the stories and interviews in the book.

We weren’t really sure what to expect when we interviewed Tim O’Reilly. Between the

two of us, Jenny had met him only once, at the Amazon Developer Days conference

(where she’d been invited to speak), but we’d read interviews with him, and his writing

on O’Reilly Radar. And having worked with O’Reilly for years as authors, we’ve had a lot

of contact with the culture that he created there and the teams that he’s built. Everyone

who’s been around the industry for any time knows that he’s had much more of an

impact on the field than someone who simply publishes books. By most accounts, he

,foreword.17193 Page xvii Thursday, February 12, 2009 3:09 PM

xviii W H Y B E A U T I F U L T E A M S ?

coined the phrase “Web 2.0,” and he was a seminal figure in the early days of the open

source movement. We were particularly interested in what he had to say about leadership

and how to direct groups of people without micromanaging them. Both of us were sur-

prised—pleasantly—to find that he told us things about teams and management that nei-

ther of us had heard before, and we found ourselves thinking about them a little

differently after we spoke with him.

So if you picked up this book hoping to find the One Correct Way™ to run a beautiful team,

we’re really sorry, because that’s not what this book is about. But if you’re looking to gain

some insight into what makes a good team tick, and what you can do to take a mediocre

team and make them better—or take a great team and make them crash and burn—you’re

going to get a lot out of this book. We think that it’s a good read, and at times a gripping

one. It represents a wealth of experience, from a very wide range of people all around the

industry (and a few who aren’t in our industry at all). It attempts to find the general

things that hang teams together, without giving you prescription, dogma, theory, or overt

advice. We hope you enjoy reading Beautiful Teams as much as we’ve enjoyed bringing it

together.

ANDREW STELLMAN AND JENNIFER GREENE

MARCH 2009

,foreword.17193 Page xviii Thursday, February 12, 2009 3:09 PM

