
Achieving high performance
in Mercurial

Bryan O'Sullivan

bos@serpentine.com

The origins of Mercurial

● In April 2005, Linux was suddenly without a
revision control tool

● No viable replacements in sight
● Two people started writing their own
● Linus Torvalds: git

– C core, random scripting languages on top
● Matt Mackall: Mercurial

– Pure Python at first (now 5% C)

The problem domain

● Original target: Linux kernel
– 20,000 files— one checkout is ~220MB

● Hundreds of contributors
– Some use git, some Mercurial, some nothing

● Median rate of change:
– 334 commits per week
– ~3000 files modified per week

● Peak rate of change:
– 342 commits in one hour, 2105 in one week

Where Mercurial is now

● High-profile adopters
– OpenSolaris
– One Laptop Per Child
– Xen OS virualisation

● Growth in both free and commercial users

● Why are people drawn to Mercurial?
– Easy to learn and understand
– Very fast, scales from tiny to very large projects
– Simple to deploy

Distributed revision control

● Everyone has full history locally
– All common operations are local, even commits

● No single point of failure

● Resync with other developers when you want
– Network only needed during resync
– No loss of productivity on e.g. trains, planes

● Branching and merging are very frequent

The social aspect

● Centralised tools enforce a divided world
– You have committers and outsiders
– Outsiders have very limited (read-only) use of

revision control

● Why not choose your development model?

● If you like close-knit centralised work, simply
use a distributed tool that way
– If you prefer a different model, distributed tools

will just work

Why care about performance?

● Performance is not an end in itself
– The point is to make the software more usable

● 30-minute waits cost more than just time
– Easy to forget what you were doing
– Less tool use, so fewer commits
– Fewer commits means fewer fallbacks on error

● What does high performance buy you?
– You don't switch to something else while you wait
– Cheap branches encourage experiments
– New ways to do revision control

Python— a surprising choice?

● People do not often choose Python for
“ intensive” workloads
– (Plenty of exceptions, but generally true)

● ... So why did Mercurial choose it?
– Revision control is often I/O-bound

● If you're waiting for disk, no language will help!

– Mercurial leaves much “ heavy lifting” to C
● Uses standard Python libraries, functions known to be

written in C

Python— benefits

● The usual stuff
– Expressiveness
– Duck typing
– I'm preaching to the converted, right?

● More interesting for long-term viability...
– Plenty of useful, clean third-party code for reuse

● urlgrabber, lsprof, coverage.py, ...
– Lower obstacles to casual contribution
– 75% of all contributors have sent in <= 5 patches
– Many never used Python before fixing a bug or

adding a feature in Mercurial and contributing it

Strategies for success

● When in doubt, do nothing

● Plan for performance on day one

● It's easier to make simple things fast

● If you're not measuring it, it's slow

● Find ways to avoid the disk

When in doubt, do nothing

● Every project has tar pits
– 50% of the work, 0.5% of the benefit

● What does Mercurial do nothing about?
– Content merges (huge tar pit!)
– Line ending conversion

● Surely we can't have no answer!?
– Content merges: external script
– Line endings: contributed plugin

● Core stays simple, but users are happy

Plan for performance on day one

● Revision control is well understood
– But people still write non-scalable tools

● Start with performance in mind
– “ I expect in most cases my tea will still be warm”

● Set yourself performance targets
– You might have to refine them later
– But you'll never meet them if they're not there

● Measure on large data sets from the outset
– It's easier to start with good performance than to retrofit it

It's easier to make simple things fast

● Example: compare revision and working dir

● Strawman implementation
– Compare one file in repo with one in working dir
– If comparing entire tree, repeat for all files

● Doing this is slow on big trees
– On small tree, hard to measure difference

● Less abstraction makes it easier to map from
user's intention to what the disk can do well

If you're not measuring it, it's slow

● Two notionally linear-time algorithms
– “ A” knows about file layout on disk
– “ B” does not

● “ A” p ermits more linear reads, fewer seeks
● The mechanical properties of the disk give

“ A” a huge advantage, but ...

● On small data sets, both look “ fast enough”

● When you grow your data set, the fun begins!

Have you measured recently?

● It's easy to add performance regressions
– They can go undiscovered for months

● Two regressions in scanning modified files
– One changed file access ordering, so suddenly

started seeking more
– Another defeated an inner-loop optimisation
– Both changes looked completely innocuous to

reviewers

● You have to treat performance as a process
– It's not just a “ place you get to” and then ignore

Find ways to avoid the disk, 1

● How to walk the directory tree efficiently
● Don't use open().read() when os.stat() will do

– Save stat data at checkout time, only do open&read if
stat data has changed

● Don't use os.stat() when os.listdir() could do
– On BSD & Linux, readdir(3) will tell the type of an entry,

so no need to os.stat() directories
– Requires a C extension, but saves up to 33% time

● Don't use os.listdir() when nothing will do
– Prune directories and files to walk as early as possible

Metadata storage

● Some popular ways to store revision data
– Weave: O(N) (SCCS)
– Reverse delta: O(N) (RCS, SVN/bdb)
– Skip delta: O(log N) (SVN/fsfs)

● Reads, writes, or both are expensive
– Adding a rev to a weave can rewrite it all
– Reading an old rev is costly with reverse deltas
– Reading the newest rev with fsfs is expensive

Find ways to avoid the disk, 2

● Mercurial's answer: the revlog
– Revision data stored as forward deltas
– Files are only ever read or appended
– Periodic fulltext storage makes retrieval O(1)

● Delta is computed against head, not parent
– Trades off delta size against seek probability
– Bigger deltas can be read linearly at small cost
– Seeking to a parent revision is expensive
– ~25% faster than delta vs parent in practice

Mercurial and revlogs

● Revlogs underly all historical metadata
– Filelog — file modification history
– Manifest— which rev of each file is present in a

changeset
– Changelog — rev of manifest to use, committer

name, comment, other changeset metadata

● The only C code in Mercurial is here
– One module for computing deltas
– Another for composing them when reading a rev
– Just 500 lines of code

File formats, flexibility, speed

● Two death knells of I/O performance
– “ Let's use sqlite/mysql/postgres!”
– “ Let's use XML!”

● SQL is great if you're in uncertain territory
– Bad if you want to control I/O

● XML is OKish if you need to interoperate
– Expensive to read and write
– Unpleasant APIs make code hard to follow

● Each provides tempting extensibility
– “ Low barrier to new features” means “ high barrier to good

performance”

In praise of inflexible file formats

● Note: this only makes sense if you know
exactly what you need

● Design as few formats as possible
– Mercurial has two (revlog and dirstate)
– Focus on the crucial abstractions you must have

● Make files simple to parse and generate
– Mercurial uses string split/join, struct pack/unpack

● Think about I/O implications, and measure!

Simple performance tests

● Subversion 1.3.2 (ra_local) vs. Mercurial 0.9
– Data: Linux 2.6.17 (20,041 files, 216MB data)
– Host: Thinkpad X31, 1.3GHz Pentium M, 768M RAM

● These are best case numbers for Subversion
– ra_dav, ra_svn much more widely used, slower

Operation Units Hg
secs 79.8 4.6

33.5 1.3
secs 320.4 58.7
secs 329.2 70.6

Size of working copy (import of one rev) MB 595 387
Size of working copy (full history) MB ~595 567

Svn
Time to add all files to empty repo
Time to commit all added files mins
Modify 5,000 files, time status
Modify 5,000 files, time diff

The patch management problem

● A common situation:
– You have third-party software
– You need to modify it
– You need to upgrade the package

● What do you do with your modifications?
– Redo them by hand?

● Painful!
– Generate a patch, and apply it?

● Not too bad, but conflicts are a pain

● What if you have lots of modifications?

The solution: Mercurial Queues

● Automates patch management
● Integrated into Mercurial

– Patches look like changesets
– Use tools like log, annotate, bisect on patches

● Need to upgrade underlying software?
– No problem!
– If patches have conflicts, use GUI tools to fix

● Used by Linux kernel and distro maintainers

Using Mercurial Queues

● When you create a new patch...
(...or import an existing patch or series...)

● ...the patch looks like a changeset, but...
● You can edit files, then refresh the patch
● Not just for managing static patches

– Maintain existing patches, follow upstream evolution
– Develop new features as patch series

● Work with a stack of incremental patches
– Pop down the stack to work on an older patch
– Changesets for the popped patches vanish
– Push patches back onto the stack again later

MQ and speed

● MQ was built for lots of patches
● Real-world test: Linux 2.6.17-mm1

– Andrew Morton's Linux kernel patches
– 1,738 patches, 687,500 lines of changes

● Push all patches in 233.5 seconds
– 7.5 patches committed per second!

● Pop all patches in 30.3 seconds
● Refresh a big patch in 6.6 seconds

– Patch touches 287 files; changes 22,779 lines

Wrapping up

● Mercurial hits a very sweet spot
– Simple model; easy to learn; hackable code
– Comprehensive features
– Blazingly fast

● Performance is a means, not an end
– Lets you focus on your real work
– Enables new ways to get stuff done, such as MQ

● Performance takes dedication
– If you don't focus on it, you don't have it
– Take your eye off it, and it vanishes

And finally...

Thank you!

