

The Mercurial SCM

Fast.
Simple.

Distributed.

Bryan O'Sullivan
bos@serpentine.com

Revision control: a crowded field
Accurev

BitKeeper

CCC/Harvest

ClearCase

Perforce

StarTeam

Surround

Vault

...

Aegis

Arch

Bazaar-NG

CVS

Darcs

git

PRCS

Subversion

SVK

Vesta

...

One way to look at things

● I have work to do!

● My SCM tool should:
1.Be easy to understand

2.Help me to work with others

3.Let me work efficiently

● I want something simple that works

One way to look at things

● My SCM tool should:

1.Be easy to understand
2.Help me to work with others

3.Let me work efficiently

Be easy to understand

● User quote: “ Mercurial's conceptual
model is clean and simple enough to carry
around in my head”

● Let's introduce three concepts:
– Repository
– Changeset
– Working directory

What's a repository?

● Simple
– A directory containing the history of my project
– No fancy database, no big server: just a directory

● Lightweight
– Making a copy (a “ clone”) of a repository is cheap

● Everywhere
– Each person works in their own repositories

What's in a repository?

Mercurial doesn't actually expose these details.

(But they're simple, and it helps to know what's going on.)

● Changelog
– The history of changes to the repository

● Manifest
– History of file versions used in each changeset

● Per-file data
– History of every file that Mercurial tracks

Contrast the models

Traditional SCM
● Exactly one central repo
● Server acts as bottleneck
● Managing server load is

expensive or impossible
● Distant users see slow

response
● Server failure is catastrophic
● Net connection required

Mercurial
● Central repo is optional
● Servers used infrequently
● Put mirrors wherever you

want, for free
● Distant users have

everything at their fingertips
● Every repo is a full backup
● Fully productive anywhere

What's a changeset?

● A snapshot of the project at a point in time
● It records:

– Who made the change (the “ committer”)
– A readable description of the change
– What files were changed, what the changes were
– What the parent changeset was

● Creating a changeset is called “ committing” i t

What's the working directory?

● A view of the repo as of some changeset
– This changeset is the working directory's parent

● I can edit any file in the working directory
– My changes will get rolled into the next changeset
– I can add, remove, rename, and copy files

● I can see what I've changed, and how

Micro-tutorial: Hg in 60 seconds

● Create a repository hg init myrepo

● Go in there cd myrepo

● Edit a file emacs myfile

● Tell hg to track the file hg add myfile

● Now what's happening? hg status

– “ File has been added” A myfile
● Record my changes hg commit

One way to look at things

● My SCM tool should:
1.Be easy to understand

2.Help me to work with others
3.Let me work efficiently

Working with others

● People naturally work in parallel
– Most revision control tools make this hard

● I make some changes

● I go to check them in (“ commit” them)

● What if someone else committed first?

A common problem

● What if someone else committed before me?

● I have to merge their changes before I can
commit

● There's no permanent record of my changes
yet!

● A mistake during the merge can lose my work

The Hg model: branching

● Remember that a changeset has a
parent?

● Two changesets with the same parent
make a branch

● That's all a branch is!

– Nothing dramatic or complex

The Hg model: merging

● What do we do with branches?

● Some changesets have two parents

● These are merge changesets

● A merge changeset simply says:
– “ This is how I merged changesets A and B”

Help me to work with others

● Mercurial naturally supports parallel work

● I commit my changes when it suits me

● My changes are clean and self-contained

● I don't merge with your changes until after
I've committed mine

Merging without stress

● What if I make a mistake during a merge?

● My changes are still there; so are yours

● No work gets lost

● I simply redo the merge

Mercurial makes sharing easy

● Built-in web server
– CGI server for Apache integration

● Use ssh (“ secure shell”) for secure remote
access

● Works over network filesystems

● Share work offline using email

Sharing is symmetric

● I clone a remote repo to get a local copy

● I pull new changes from a remote repo

● I push my changes to another repo

● After a push, the remote repo is identical
to mine

Sharing mini-tutorial

hg commit I'm finished with my changes

hg push Push my changes to another repo

abort: unsynced remote changes! Hg tells me I need to merge first

hg pull Pull remote changes into my repo

added 1 changeset with 1 change to 1 file

(run 'hg heads' to see heads, 'hg merge' to merge)

hg merge Merge their changes with mine

hg commit Commit the result of the merge

hg push Push my changes and the merge

added 2 changesets with 2 changes to 2 files

One way to look at things

● My SCM tool should:
1.Be easy to understand

2.Help me to work with others

3.Let me work efficiently

Mercurial is very, very fast

● File architecture eliminates seeks

● Common operations are cheap
– No need to wait for the software

● All data is local
– No need to wait for the network

● Metadata is shared between local repos

Mercurial is space efficient

● A Linux kernel source tree is 262 MB in size
– Just the files from a tarball, no history of any kind

● 1 year of Linux kernel history in Mercurial
– 19,500 files tracked
– 27,500 changesets committed (1,840 merges)
– ~1,000 contributors

● Complete history: 293 MB

Some performance numbers

Task Time (secs)
Find changes in working directory 2.2
Commit change to one file 1.6
Annotate 3200-line file with 500-rev history 3.5
Make local clone 2.3
Populate working directory after clone 70.0
Pull 350 changesets over http 30.0

● Numbers from my 3-year-old laptop
● Used Linux kernel repo

Mercurial makes me more efficient

● Simple concepts let me focus
– Think less about SCM, more about work

● Commits and merges are separate
– Harder to lose or corrupt work by accident

● Cheap repos let me sandbox my work
– One repo per task

● Local repos let me work anywhere
– On train, over slow net connection, you name it

Other useful things to know about

● Web support includes history browser

● Comprehensive hook support
– Automate important actions (builds, code checks)

● Add optional features using extension modules
– GUI tools
– Patch queue management
– Automated regression search

It can't all be roses. Right?

● Two major missing items (both soon to come):
– Support for merging changes across renames
– Comprehensive user manual

● Want to add:
– Better GUI interfaces on Windows, Linux, MacOS
– Integration with popular IDEs

Quotes from April user survey

● “ The developers are super-helpful.”

● “ The community is great around
Mercurial.”

● “ The Mercurial community is more polite
and helpful than most.”

More April user survey quotes

● “ I consider Mercurial the best version control
system on earth.”

● “ I was up and ready to go with Mercurial in less
than 5 minutes.”

● “ Mercurial was extraordinarily easy to learn.”

● “ I used to like CVS a lot. I can't imagine going
back. Really.”

