
Ben Collins-Sussman & Brian W. Fitzpatrick
Google

LSST: October 24, 2007

What’s In It For Me?
How Your Company Can Benefit

from Open Sourcing Code

Overview
• These are our opinions
• Target audience: orgs that want to open code
• Different strategies for open sourcing code
• Pros and cons of each
• Prescribe best practices

Why Go Open Source?

• Some sort of net gain
• Create better software
• Create a real relationship with your users
• Choose your goals
– PR?
– Goodwill from techies?
– Free labor?
– Change the industry, take over world?

Measuring “Health” of Open Source

• Lots of usage (not users!)
• A number of active developers
• Constant improvements and releases
• Remember: no community == dead software

Open Source Strategies

0. “Fake Open Source” Approach

• “Open Source” your code, but don’t use an OSI-
approved license
• Pros:
– PR splash
– Effortless
• Cons:
– You’re not open source
– You’re missing the benefits
– Open Source zealots may burn your house down

1. “Throw Code Over Wall” Approach

• Post tarball of the code, then walk away.
• Pros:
– PR splash (maybe)
– Effortless
• Cons:
– No community to keep software alive (bit-rot)
– Real techies give little cred

2. Develop Internally, Post Externally

• In-house development, public repository
• Pros:
– PR splash
– Occasional volunteers can send patches
– A bit of cred from real techies
• Cons:
– Community & momentum is wholly internal
– External community likely to form elsewhere
– Attracts only “follower” developers. (No bus keys!)
– General distrust: only care about corporate agenda

3. Open Monarchy

• Public discussion, public repository
• Committers are mostly employees, occasionally a
volunteer is given the keys
• One entity (corporation, lead developer) “rules”
project and makes all decisions

3. Open Monarchy

• Pros:
– PR splash
– Even more cred from techies
– Better quality volunteers; they can participate in

discussions, sometimes commit directly
– Results in better software
• Cons:
– Community not long-term sustainable
– High risk of angry revolutions and forking
– General distrust: only care about corporate agenda

4. Consensus-Based Development

• Almost everything is public
• Decisions are based on consensus of the committers
• Commit privilege must be earned by everyone

4. Consensus-Based Development
• Pros:
– Continuously increasing PR benefits
– Long-term, sustainable communities
– Complete techie cred
– High quality volunteers (full bus keys)
– Trust from other companies and participants
– Results in even better software
• Cons:
– Little short-term benefit
– In the short-term, project agenda must come first
– Hard Work
– You need to hire strong leaders

Why We Think This Is Best
• Traditionally companies isolate developers from
users
– “They can be more productive”
• Results in better software
• If done right, internal developers will see the benefits

BUT BUT...
I Don’t Want To Lose Control!

• “Strangers will force me to do things!”

• “Nasty people will hijack the project!”

Answer: Craft your Community

• Choose a well-scoped mission
• Have your devs establish a strong, respectful culture
• Set the discussion tone carefully
• Have a well-defined process for making decisions
•Watch our ‘poisonous people’ talk ;-)

• Remember, you can set the stage, but it takes effort

What about Forking?

• Extremely rare in consensus-based development
•Majority always moves in one direction
• Really hard for a hive to swarm without at least 50%
of the bees

How To Build
a Consensus-Based
Open Source Project

1. Come up with a Goal.
• Something useful
• Something people can be excited about
•Might only benefit your company indirectly, or in the
long-term

• Examples: Collabnet, Google.

2. Write a Mission Statement

• Be very careful about scoping
– too broad: attracts the wrong contributors
– too narrow: attracts no interest at all
• Non-goals are important

• Examples: Subversion, GWT

3. Prepare your Team

• Read Karl’s book!
Discuss it
• Learn how to set
community tone
• Decide on process for
admitting new committers
• Learn how to diffuse
poisonous people
• Thicken everyone’s skin

4. Move all Development to Public

• Launch public mailing lists, repository, bug tracker
•Minimize use of internal mailing lists!
– Develop policy for working with internal devs
• Do some PR to attract volunteers
• Start with one mailing list if possible, split later

Summary
• Choose strategy based on your goals
• There are tradeoffs
•We think consensus-based creates the best software

Q&A
Ben Collins-Sussman & Brian W. Fitzpatrick

sussman@google.com
fitz@google.com

mailto:sussman@google.com
mailto:sussman@google.com
mailto:fitz@google.com
mailto:fitz@google.com

