
Running FOP

1. System Requirements
The following software must be installed:

• Java 1.2.x or later Runtime Environment.
• FOP. The FOP distribution includes all libraries that you will need to run a basic FOP

installation. These can be found in the xml-fop/lib directory. These libraries include the
following:
• Apache Xerces-J for XML parsing. You can use other XML parsers which support

SAX and DOM.
• Apache Xalan-J, an XSLT processor.
• Apache Batik, an SVG library.

The following sofware is optional, depending on your needs:

• Graphics libraries. Support for some graphics formats requires additional packages. See
FOP: Graphics Formats for details.

• PDF encryption. See FOP: PDF Encryption for details.

In addition, the following system requirements apply:

• If you will be using FOP to process SVG, you must do so in a graphical environment. See
FOP: Graphics (Batik) for details.

2. Installation

2.1. Instructions

Basic FOP installation consists of first unzipping the .gz file that is the distribution medium,
then unarchiving the resulting .tar file in a directory/folder that is convenient on your
system. Please consult your operating system documentation or Zip application software
documentation for instructions specific to your site.

2.2. Problems

Some Mac OSX users have experienced filename truncation problems using Stuffit to unzip
and unarchive their distribution media. This is a legacy of older Mac operating systems,

Page 1
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

download.html
download.html
download.html
graphics.html
graphics.html
graphics.html
graphics.html
graphics.html
pdfencryption.html
pdfencryption.html
pdfencryption.html
pdfencryption.html
graphics.html#batik
graphics.html#batik
graphics.html#batik
graphics.html#batik
graphics.html#batik
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev

which had a 31-character pathname limit. Several Mac OSX users have recommended that
Mac OSX users use the shell command tar -xzf instead.

3. Starting FOP as a Standalone Application
The usual and recommended practice for starting FOP from the command line is to run the
batch file fop.bat (Windows) or the shell script fop.sh (Unix/Linux). If you write your own
scripts, be sure to review these standard scripts to make sure that you get your environment
properly configured.

The standard scripts for starting FOP require that the environment variable JAVA_HOME be
set to a path pointing to the appropriate Java installation on your system. Macintosh OSX
includes a Java environment as part of its distribution. We are told by Mac OSX users that
the path to use in this case is /Library/Java/Home. Caveat: We suspect that, as Apple
releases new Java environments and as FOP upgrades the minimum Java requirements, the
two will inevitably not match on some systems. Please see Java on Mac OSX FAQ for
information as it becomes available.

fop [options] [-fo|-xml] infile [-xsl file]
[-awt|-pdf|-mif|-pcl|-ps|-txt|-svg|-at|-print] <outfile>

[OPTIONS]

-d debug mode
-x dump configuration settings
-q quiet mode
-c cfg.xml use additional configuration file cfg.xml
-l lang the language to use for user information
-s (-at output) omit tree below block areas
-txt.encoding (-txt output encoding use the encoding for the output file.

The encoding must be a valid java encoding.
-o [password] pdf file will be encrypted with option owner password
-u [password] pdf file will be encrypted with option user password
-noprint pdf file will be encrypted without printing permission
-nocopy pdf file will be encrypted without copy content permission
-noedit pdf file will be encrypted without edit content permission
-noannotations pdf file will be encrypted without edit annotation permission

[INPUT]
infile XSLFO input file (the same as the next)
-fo infile xsl:fo input file
-xml infile xml input file, must be used together with -xsl
-xsl stylesheet xslt stylesheet

[OUTPUT]
outfile input will be rendered as pdf file into outfile
-pdf outfile input will be rendered as pdf file (outfile req'd)

Running FOP

Page 2
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev

-awt input will be displayed on screen
-mif outfile input will be rendered as mif file (outfile req'd)
-pcl outfile input will be rendered as pcl file (outfile req'd)
-ps outfile input will be rendered as PostScript file (outfile req'd)
-txt outfile input will be rendered as text file (outfile req'd)
-svg outfile input will be rendered as an svg slides file (outfile req'd)
-at outfile representation of area tree as XML (outfile req'd)
-print input file will be rendered and sent to the printer

see print specific options with "-print help"

[Examples]
fop foo.fo foo.pdf
fop -fo foo.fo -pdf foo.pdf (does the same as the previous line)
fop -xsl foo.xsl -xml foo.xml -pdf foo.pdf
fop foo.fo -mif foo.mif
fop foo.fo -print or fop -print foo.fo
fop foo.fo -awt

PDF encryption is only available if FOP was compiled with encryption support and if
compatible encryption support is availabe at run time. Currently, only the JCE is supported.
Check the Details.

4. Using Xalan to Check XSL-FO Input
FOP sessions that use -xml and -xsl input instead of -fo input are actually controlling two
distinct conversions: Tranforming XML to XSL-FO, then formatting the XSL-FO to PDF (or
another FOP output format). Although FOP controls both of these processes, the first is
included merely as a convenience and for performance reasons. Only the second is part of
FOP's core processing. If a user has a problem running FOP, it is important to determine
which of these two processes is causing the problem. If the problem is in the first process, the
user's stylesheet is likely the cause. The FOP development team does not have resources to
help with stylesheet issues, although we have included links to some useful Specifications
and Books/Articles. If the problem is in the second process, FOP may have a bug or an
unimplemented feature that does require attention from the FOP development team.

Note:
The user is always responsible to provide correct XSL-FO code to FOP.

In the case of using -xml and -xsl input, although the user is responsible for the XSL-FO
code that is FOP's input, it is not visible to the user. To make the intermediate FO file visible,
the FOP distribution includes xalan.bat (Windows batch file) and xalan.sh (Unix/Linux
script), which run only the first (transformation) step, and write the results to a file.

Note:
When asking for help on the FOP mailing lists, never attach XML and XSL to illustrate the issue. Always run the xalan script
and send the resulting XSL-FO file instead. Of course, be sure that the XSL-FO file is correct before sending it.

Running FOP

Page 3
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

pdfencryption.html
resources.html#specs
resources.html#specs
resources.html#articles
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev

The scripts are invoked the same way that Xalan is:

xalan -in xmlfile -xsl file -out outfile

Note that there are some subtle differences between the "fop" and "xalan" command lines.

5. Memory Usage
FOP can consume quite a bit of memory, even though this has been continually improved.
This is partly inherent to the formatting process and partly caused by implementation
choices. All FO processors currently on the market have memory problems with certain
layouts.

If you are running out of memory when using FOP, here are some ideas that may help:

• Increase memory available to the JVM. See the -Xmx option for more information.
(Warning: It is usually unwise to increase the memory allocated to the JVM beyond the
amount of physical RAM, as this will generally cause significantly slower performance.)

• Avoid forward references. Forward references are references to some later part of a
document. Examples include page number citations which refer to pages which follow
the citation, tables of contents at the beginning of a document, and page numbering
schemes that include the total number of pages in the document ("page N of TOTAL").
Forward references cause all subsequent pages to be held in memory until the reference
can be resolved, i.e. until the page with the referenced element is encountered. Forward
references may be required by the task, but if you are getting a memory overflow, at least
consider the possibility of eliminating them. A table of contents might be eliminated,
relying on PDF bookmarks instead. Or it might be moved to the end of the document
without dimishing its value very much. Or, in some circumstances, the paper could even
be reshuffled after printing.

• Avoid large images, especially if they are scaled down. If they need to be scaled, scale
them in another application upstream from FOP. For many image formats, memory
consumption is driven mainly by the size of the image file itself, not its dimensions
(width*height), so increasing the compression rate may help.

• Use multiple page sequences. FOP starts rendering after the end of a page sequence is
encountered. While the actual rendering is done page-by-page, some additional memory
allocated for other purposes could be freed after the page sequence has been rendered.

• Break down large tables. If you don't use table headers and footers, just start a new table
every N rows. With headers and footers, consider integrating them as normal table rows,
or, if they are used at page breaks, try to put the information into static content. You can
then use markers to change them.

• Clear the image cache. At the moment, images in the cache are not released automatically
when an OutOfMemoryError is imminent. Starting with version 0.20.5 however, you can

Running FOP

Page 4
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

http://xml.apache.org/xalan-j/commandline.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html
faq.html#pagenum
faq.html#pagenum
faq.html#pagenum
faq.html#pagenum
faq.html#pagenum
faq.html#pagenum
faq.html#pagenum
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev

call org.apache.fop.image.FopImageFactory.resetCache() to empty
the image cache.

There are currently some bugs which cause FOP to go into a nonterminating loop, which will
also often result in a memory overflow. A characteristic symptom is continuous box
overflows in the log. Most of these loops are triggered by elements that do not fit in the
available space, such as big images or an improperly specified width in nested block
elements. The only workaround is to locate such problems and correct them.

One of FOP's stated design goals is to be able to process input of arbitrary size. Addressing
this goal is one of the prime motivations behind the FOP Redesign.

6. Problems
If you have problems running FOP, please see the "How to get Help" page.

Running FOP

Page 5
Created by: FOP 1.0dev

http://xml.apache.org/fop/dev

faq.html#boxoverflow
faq.html#boxoverflow
dev/index.html
dev/index.html
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev
http://xml.apache.org/fop/dev

	Running FOP
	1 System Requirements
	2 Installation
	2.1 Instructions
	2.2 Problems

	3 Starting FOP as a Standalone Application
	4 Using Xalan to Check XSL-FO Input
	5 Memory Usage
	6 Problems

