
243

Chapter 19 C H A P T E R N I N E T E E N

Succeeding with Requirements
A Drama in Three Acts

Karl E. Wiegers

The Setting
Autumn 1994. The research laboratories of a large company, Contoso Pharmaceuticals (a

real company, but not its real name).

The Cast
Paul

Manager of the Health and Safety Department at Contoso Pharmaceuticals

Dana

Manager of Contoso’s chemical stockroom

Sarah

One of the chemists who works in the Contoso Research Laboratories

Jonathan

A member of the Purchasing Department

Janet

A project manager and analyst from the research labs’ IT department

,ch19.19556 Page 243 Thursday, February 12, 2009 3:09 PM

244 C H A P T E R N I N E T E E N

Devon

A programmer/analyst from the research labs’ IT department

Karl

An internal consultant for the Contoso Research Laboratories

Prologue: Paul Is in a Pickle
Paul is feeling some heat and he isn’t happy. New government regulations require Con-

toso Pharmaceuticals to supply specific quarterly reports describing how it acquires, stores,

uses, and disposes of chemicals. Hundreds of Contoso scientists have vast arrays of chemi-

cals in their labs and thousands of additional containers are stored in the chemical stock-

room. The only way Paul can comply with these reporting regulations is to have a robust

Chemical Tracking System (CTS) that can monitor the location and status of every chemi-

cal container in the company.

Paul has been aware of this need for some time, but now it has become critical. Two previ-

ous teams from a corporate IT department had taken a stab at the Chemical Tracking Sys-

tem. Each team sat down with Paul to discuss his requirements, but neither team ever

produced a written requirements specification and eventually both efforts were aban-

doned without delivering anything. Now Paul is under increasing pressure to deliver these

reports for regulatory compliance and he has nothing to show for the previous efforts.

Knowing how critically this application is needed, the research labs’ IT department char-

ters a new team to beat the project into submission.

Act I: Girding Our Loins
Wherein we develop a strategy and assemble the cast.

The initial goal of the project team is to develop a requirements specification that is suffi-

ciently accurate and complete to allow the software development to begin. The decision to

build the system in-house or to outsource part or all of the development is deferred to a

later date. Our requirements analysis team consists of three people:

• Janet is an experienced developer and analyst who is taking on her first significant

project management role. She will plan the project activities, track our progress, and

serve as one of the requirements analysts. Although fairly young, Janet is mature,

doesn’t get rattled easily, and has a calm demeanor.

• Devon is a more junior developer. Bright and energetic, he’s looking forward to build-

ing some analyst skills. If the CTS software is implemented in-house, Devon will be one

of the developers.

• I’m Karl. I’ve worked at Contoso for 15 years as a research scientist, software devel-

oper, software manager, and quality engineer. Having pursued ways to improve

requirements engineering for some time, I frequently serve as an internal consultant. I

will work half-time in an analyst role on the CTS project.

,ch19.19556 Page 244 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 245

Janet meets with Paul and explains that our team of analysts is going to do our best to

meet his needs. But first, of course, we need to understand his requirements for the CTS.

Paul’s frustration is evident. “I gave your predecessors on the two previous teams my

requirements,” he says. “I don’t have time to talk about requirements anymore. Build me

a system!” This becomes our mantra for the project: “Build me a system!”

Facing a hostile, disillusioned, and somewhat intimidating lead customer, our challenge is

clear. We need to overcome the distasteful legacy left by the preceding groups and some-

how engage Paul and other customers in an effective and collaborative requirements

development process. It looks like an uphill struggle.

It’s not unusual for the requirements development process to be strained and maybe even

adversarial. The participants sometimes forget that they are (or at least ought to be) on the

same side, working toward the common goal of successfully delivering a useful product.

Our first step is to begin forging a collaborative partnership with Paul. He needs to have

confidence that this time will be different, that we really will move him toward his goal of

meeting the regulatory requirements. And we IT people must concoct a plan for delivering

on that expectation.

Expectation Management

Too often, teams begin working on a project without having discussed just how they will

collaborate. The team members make assumptions about the activities involved and how

the participants will interact with each other. People have different communication styles,

various understandings of the problem, diverse perceptions about just what “require-

ments” are, and so on. Many groups don’t explicitly agree upon how they will make the

myriad decisions that arise in the course of every project. Neglecting these issues can lead

to mismatched expectations, ineffective collaboration, and hard feelings. It’s well worth

taking some time at the outset to discuss just how the team will operate.

Janet begins by promising Paul that this analyst team will use more effective approaches

to understanding his requirements for this application. Furthermore, we’ll document

what we learn in a way that serves as a suitable foundation for the development work that

will follow. Janet also sets expectations for what we need from Paul if this collaborative

effort is to succeed. Notwithstanding his previous frustrating experiences, the fact is that

we have to start over with the process of exploring requirements. So we’re going to need

time from Paul and perhaps his colleagues so that we can understand just what kind of a

system would meet his needs. Paul reluctantly agrees to play along.

Classy Users

Paul is not the only stakeholder for the system, and the members of the Health and Safety

Department won’t be its sole users. We apply the concept of user classes to identify other

groups of users who will have largely different sets of needs. Members of different user

classes might need different functions or features, have various educational or skill levels,

work in different locations, or have other distinguishing characteristics.

,ch19.19556 Page 245 Thursday, February 12, 2009 3:09 PM

246 C H A P T E R N I N E T E E N

Based on input from Paul and the analyst team’s understanding of Contoso’s research

environment, we identify the following four major user classes:

Health and Safety Department staff

Led by Paul, these people are responsible for generating the necessary government

reports that describe how Contoso Pharmaceuticals handles its chemicals.

Chemists

Contoso employs hundreds of chemists in the research labs, product development

areas, and manufacturing. These chemists acquire new chemicals, store them in their

labs, use them in experiments, and dispose of leftover chemicals that are no longer fit

for use.

Chemical stockroom staff

Although few in number, the people who work in this stockroom are central to the

chemical tracking process. They place requests for chemicals to be purchased from ven-

dors, stock and dispense thousands of chemical containers, manage supplies of new

chemicals invented by the research scientists themselves, and dispose of outdated

chemicals.

Purchasing Department staff

Like the Health and Safety Department staff, these people will never touch a chemical.

They serve as the interface between Contoso employees who need to buy chemicals

and the vendors who supply the chemicals.

These user classes have certain needs in common. For example, both chemists and the

chemical stockroom staff will place requests for new chemicals periodically and dispose of

chemicals. However, each user class also has a distinct set of requirements for services

they expect from the CTS.

Our next analyst challenge is to find the right individuals with whom to explore these

needs. We must then consolidate those needs into a cohesive software requirements spec-

ification. This requirements exploration will include resolving requirement conflicts and

setting priorities to reach the best balance of timely and cost-effective delivery of a use-

ful—and usable—system.

Who Ya Gonna Call?

In 1986, my small development group at Contoso realized we had to learn how to interact

more closely with our users so that we could properly meet their software needs. We con-

ceived the project role of product champion, a key user representative who works closely

with the requirements analyst. The product champion serves as the literal voice of the cus-

tomer for a particular user class. Product champions typically are experienced users and

subject matter experts in their domain.

Our next step on the CTS project, therefore, is to identify champions for the four user

classes. My previous group had created a list of possible product champion activities that the

CTS analysts can present to each candidate champion so that they understand what they’re

,ch19.19556 Page 246 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 247

getting into. Negotiating the exact responsibilities that each champion is willing to accept is

an important part of crafting that collaborative customer–development partnership.

As the key manager on the spot and a hands-on user of the future system, Paul is the

obvious product champion for the Health and Safety Department. Our project manager

and lead analyst, Janet, will work with Paul to define his requirements. A member of the

Purchasing Department named Jonathan is willing to present requirements for the CTS

from his community’s perspective. Our second analyst, Devon, agrees to work with

Jonathan on Purchasing’s requirements. Dana manages the chemical stockroom. She’s the

natural product champion for that user class, although she’ll obtain additional input from

the members of her staff who perform the day-to-day operations. Janet will do double-

duty to lead requirements elicitation with Dana.

Finding a product champion for the chemist group is more challenging. Dana tries to help.

“Before I became the chemical stockroom manager, I was a laboratory chemist,” she tells

us. “Therefore, you don’t need to talk to any other chemists about their requirements. I

can tell you everything you need to know.”

Although Dana is sincere and means well, she is wrong. And it’s really hard to convince

her that she’s wrong. The first problem is that she’s no longer a member of the chemist

user class. She is literally the best person in the world to describe the needs of the chemical

stockroom staff. She isn’t, however, a practicing chemist anymore. I learned long ago that

it is best to have actual members of the user class participate in requirements develop-

ment, rather than using surrogates or former members of that user class. In some cases,

particularly on commercial product development projects, you don’t have direct access to

appropriate user representatives, so you must use surrogates, such as product managers or

marketing staff. That isn’t a problem for this internal corporate project, where we can

arrange to work with actual users.

The second concern we have with Dana’s offer is that she has a narrow and parochial view

of the chemists’ requirements. She is also very adamant about her opinions on such mat-

ters, and she is prone to crying when discussions get a bit tense or her opinions are not

immediately accepted. (Dana isn’t all that much fun to work with.) Relying on Dana’s

strong opinions alone would not provide the rich understanding of chemist needs that we

need to get. So we politely decline Dana’s offer and go searching for a suitable chemist

representative.

We find one! A highly experienced and respected chemist named Sarah offers to serve as

the product champion. Although she isn’t terribly sophisticated when it comes to comput-

ers, Sarah recognizes the value that the Chemical Tracking System will provide to her and

her colleagues. It’s common that the people best suited as representatives for their user

class are already overextended in their own work and are reluctant to commit much time

to requirements-related activities. We really luck out with Sarah, though. She promises to

create time in her busy schedule for requirements elicitation discussions and review ses-

sions. Since my own educational background is in chemistry, I will be the analyst working

with Sarah to understand the requirements that chemists have for CTS.

,ch19.19556 Page 247 Thursday, February 12, 2009 3:09 PM

248 C H A P T E R N I N E T E E N

We realize it’s just not realistic to expect even an experienced chemist like Sarah to know

the full spectrum of requirements for all the chemists at Contoso. She needs some help.

We establish a backup team of five additional chemists drawn from various departments

across the company. They will have many requirements in common, but these representa-

tives know about specific needs that pertain to the kinds of chemical work going on in

their own areas.

We don’t expect Sarah alone to produce the chemists’ requirements, or even Sarah plus

the backup team. Each of our product champions is responsible for interacting with other

members of his or her user class to collect ideas and get feedback on proposals. The prod-

uct champion also will resolve requirements conflicts that arise between individual mem-

bers of the user class (which makes the analysts’ lives much easier). So in this

representative engagement model, the primary pipelines through which requirements

flow are from each product champion to the corresponding analyst, with extensive inter-

actions behind the scenes between the champion and other users. The analyst will need to

work with the various product champions to resolve requirements conflicts that arise

between the user classes.

Now we’re ready to roll. Table 19-1 shows the complete cast of key participants in the

requirements elicitation activities we are about to launch. But exactly how should we

proceed?

Act II: Use Cases, Schmuse Cases
Wherein we try some requirements development techniques and see what happens.

Traditionally, requirements analysts have often opened an interview or workshop by ask-

ing users, “What do you want?” This is the least useful question you can ask when explor-

ing requirements. A related nearly useless question is “What are your requirements?”

People aren’t sure just how to answer these vague questions, and often they yield random

bits of important, but unorganized, information. We don’t want to fall into that same trap

on this project, so we need a better way to hunt the elusive and secretive requirement.

The Case for Use Cases

Several members of our IT groups routinely attend technical conferences on software

development. The conference attendees then present summaries of the talks they heard at

our weekly group meeting and we all contemplate how we might apply new techniques to

our own projects. I recall that one of my colleagues recently attended a conference presen-

T A B L E 1 9 - 1 . Requirements elicitation participants for the Chemical Tracking System project

User class Requirements analyst Product champion Backup team?

Health and Safety Department Janet Paul No

Chemical stockroom staff Janet Dana No

Chemists Karl Sarah Yes (5)

Purchasing Department Devon Jonathan No

,ch19.19556 Page 248 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 249

tation on a requirements elicitation technique called use cases. This sounds like a poten-

tially useful method, so I ask to borrow his copy of the presentation slides.

As I pore over his notes on the use case method, I get the feeling this just might work for

the Chemical Tracking System. We don’t have much information about use cases available

and none of us has any experience with them, but the concept surely makes sense. The

main theme of the use case technique is to focus requirements discussions on what the

user needs to accomplish with the system, rather than on system features and functions.

That is, we will take a usage-centric approach instead of a product-centric approach. So

instead of asking our users “What do you want?” or even “What do you want the system

to do?” we plan to ask them “What do you need to do with the system?” It’s a small

change in the question but a profound shift in perspective. Each of these “things the user

needs to do with the system” is a potential use case, literally a case of usage.

Since we’ve never tried use cases before, we aren’t sure how this is going to work and we

face some learning curves. Use cases will also be unfamiliar to our product champions.

We’ll need to educate them about their role in this new approach and explain why we’re

trying this route rather than holding a more traditional requirements conversation.

Working in the Shop

Instead of conducting many individual interviews with user representatives, we decide to

hold a series of facilitated requirements elicitation workshops. Each analyst will meet peri-

odically with his or her user representatives to learn about the goals those users hope to

accomplish with the help of the CTS. The analyst will serve as the facilitator and recorder

for each workshop (although we soon learn that sometimes it’s helpful to split these two

roles). Having teams of users put their heads together saves the time often needed to

resolve the conflicts that arise when individuals are interviewed sequentially. The synergy

of a group discussion also generates new ideas and helps the participants reach a shared

vision of the ultimate product.

We elect to hold workshops for the different user classes separately. We’ve subdivided our

users into multiple user classes with largely different requirements, so it doesn’t make

sense to have them all participate in the same workshop sessions.

I lead the workshops with our chemist user representatives—the product champion,

Sarah, and the five members of her backup team. In keeping with the spirit of having

teams agree on how they’re going to collaborate, we establish some ground rules for each

workshop group. One of our ground rules is that the sessions will begin and end on time;

we don’t wait for people who straggle in late. Another rule is that the participants who

show up to a workshop constitute a decision-making quorum. If someone is unable to

attend, he’s invited to submit his input beforehand or to send a delegate. He’ll also be able to

review the results of each workshop. But those who attend will make the necessary deci-

sions so that we can move along expeditiously. Agreeing on these and other ground rules is

an important part of defining an effective and efficient collaborative team experience.

,ch19.19556 Page 249 Thursday, February 12, 2009 3:09 PM

250 C H A P T E R N I N E T E E N

Before we hold our first workshop, I invite the chemists to think of “things chemists

would need to do with the CTS.” Each of these “things to do” becomes a candidate use

case that we will explore in the workshops. Some are big things (Request a Chemical);

some are small (View a Stored Request). I schedule our first workshop, planning to start

with what seem to be the most important use cases.

Not certain exactly how to proceed, I refer to the conference presentation notes I men-

tioned earlier. The speaker described a technique for using flip charts and sticky notes to

capture the essential components of a use case. These components include:

• Use case name

• Name of the actor who will execute the use case (to a first approximation, an actor is a

type of user)

• A brief description of the use case and its priority

• Preconditions that must be satisfied before the system can initiate the use case

• Postconditions that reflect the state of the universe at the successful completion of use

case execution

• The normal flow, which describes the most typical set of interactions between an actor

and the system that lead to a successful outcome

• Alternative flows, which describe other ways the actor might perform the use case

(branching options and other variations)

• Exceptions, which are possible ways the use case might fail to complete execution

successfully

I am pleased when this flip-chart approach appears to work well in our workshop. I’m fur-

ther pleased when my chemists are receptive to the use case approach. Use cases are com-

fortable for many users because they relate directly to their business and how they

anticipate using the system in that business. As we gain experience, I learn how to facilitate

the workshops more effectively, to limit them to about two and a half hours in duration,

and to time-box the discussion on each use case so that we don’t get bogged down. I also

learn that it’s important to keep the use case discussion at the right level of abstraction. We

avoid drilling down into excessive detail, such as user interface specifics, prematurely.

I am Lewis (or maybe Clark) in this use case exploration. We don’t know anyone who has

applied use cases before, so I do my best to blaze the trail. Once the chemists get into a

rhythm and start making progress, the other analysts sit in on one of my workshops to

observe our approach and determine how they want to adapt the method to their own

user groups. Janet and Devon hold their own workshops in a similar style and also make

good progress with their users. The three analysts work independently, but we share our

experiences and insights so that we can all learn to do a better job. All software team

members can work more effectively if they learn by looking over the shoulders of their

colleagues.

,ch19.19556 Page 250 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 251

Use Cases Aren’t Enough

As I examine the products from a use case workshop, I realize that we’ve done a good job

of describing how users would interact with the CTS to achieve various goals. That is, the

use cases are a good way to describe user requirements. However, they don’t seem to pro-

vide all of the information a developer would need to implement those capabilities in the

system. Also, the way information is packaged into small chunks in the use case isn’t ideal

for handing off to a developer. We conclude that use cases alone will not be a sufficient

deliverable from our requirements elicitation activities.

To take it to the next level, we need to derive the associated functional requirements from

each use case. As a former developer myself, I understand that developers don’t imple-

ment use cases. Developers implement specific bits of system behavior—functional

requirements—that, in the aggregate, allow a user to perform a use case. So after each use

case workshop, I analyze the information we collected and begin growing a software

requirements specification (SRS). For each use case I write a set of functional require-

ments that, if implemented, will enable a user to perform the use case.

Some of this functionality is straightforward, particularly regarding the dialog of interac-

tions between the user and the system. However, I can derive additional functionality that

is not so evident from the use case description. For example, the use case preconditions

give no clue as to what the system should do if a precondition is not satisfied. Some of the

actions the system must perform aren’t visible to the user, so the use case doesn’t describe

them. These functional specifications provide a richer description of expected system

behavior than developers would get if we simply handed them a stack of use cases and

said, “Call me when you’re done.”

Beyond Functionality

People seem to learn best from painful experience. I reflect back on a previous project for

which we did an excellent job of specifying functionality but did not explicitly explore the

users’ quality expectations. As a consequence, the newly released system met serious

resistance because of less-than-ideal trade-offs between system efficiency, usability, and

other characteristics. Not wanting to repeat that unhappy experience, we elect to also dis-

cuss quality attribute requirements as part of specifying the CTS requirements.

Quality attributes describe not what the system does—that’s the functionality—but rather

how well it does the things that it does. Quality attributes include usability, portability,

maintainability, installability, availability, performance, efficiency, robustness, and secu-

rity. Users have implicit expectations for certain of these quality characteristics. Unfortu-

nately, they often do not spontaneously share those expectations. Users have difficulty

articulating their quality expectations in a way that provides helpful guidance for archi-

tects and developers.

Simply asking a user, “What are your robustness requirements?” isn’t likely to yield useful

information. So we take a different approach. We think about what “robustness” might

mean to our users and then we write some questions to help the user think through some

,ch19.19556 Page 251 Thursday, February 12, 2009 3:09 PM

252 C H A P T E R N I N E T E E N

aspects of robustness. An example is “What do you think the system should do if the net-

work connection fails partway through submitting a new chemical order?” We do the

same for other quality attributes that are likely to be important to the success of the sys-

tem. We analysts ask our user teams to answer these questions and to rate the relative

importance of each attribute from their perspective. Patterns emerge that help us deter-

mine which characteristics of the system are critical and which are less important. Those

quality attribute requirements go into our SRS; they are every bit as important as the

functionality descriptions when it comes to creating customer satisfaction.

The Rules of the Game

During one elicitation workshop the chemists discuss a use case called View a Stored

Request. A member of the backup team says, “I don’t want to see Sarah’s chemical

requests, and Sarah shouldn’t be able to see my requests.” The chemists agree that this is a

good policy. We record it as being a business rule. Business rules can come from various

sources:

• Corporate, organizational, or project policies, such as security policies for accessing

information systems

• Laws and regulations, like those for generating reports on chemical handling and disposal

• Industry standards, such as file formats for importing and exporting chemical structures

• Computational algorithms, perhaps to determine price discounts on large orders pur-

chased from a single vendor

Business rules are not in themselves software requirements. However, a rule can serve as

the source of functionality that must be implemented so that the system complies with or

enforces the policy. The rule that constrains who may view which orders implies the need

for functionality to authenticate each user’s identity before he can view a request. During

the elicitation workshops each user class identifies (or invents) numerous business rules.

These rules help to establish a framework to make sure the software developers color

inside the lines.

Test Before Coding? Are You Mad?

Requirements are all about describing what we’re going to have when we’re done. But as

I’m working with the flip charts from one workshop, I have a revelation. The use case

thought process appears to flow naturally into identifying tests we can use to tell whether

we have in fact built what we intended to build. I had never heard about this connection

between use cases and tests before, but it certainly makes sense to me.

So I begin writing tests from the use case description, thinking about not how I might

implement the use case, but rather how I might tell whether I had implemented it cor-

rectly. These are conceptual tests, free from implementation and user interface specifics. In

the process of writing these tests, I discover some errors in my use case. It’s another “aha!”

moment. Perhaps I can use these conceptual tests, developed early in the requirements

process, to find errors long before any design or construction takes place!

,ch19.19556 Page 252 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 253

I build on this theme. As I mentioned earlier, I had been deriving functional requirements

from the use case description. In principle, if a developer implements that functionality,

the user can perform the use case. Now I’m deriving tests from that same use case, using a

different thought process. I compare those tests to my functional requirements, looking

for two things:

• Is each of my functional requirements covered by a test?

• Could each of my tests be “executed” by firing off a particular series of functional

requirements?

As I go through this analysis, I find missing, incorrect, and unnecessary requirements.

Some of these indicate problems with the use case and some with my decomposition of

the use case into functionality fragments. I also find missing, incorrect, and unnecessary

tests. After I fix these problems, I have a lot more confidence that my requirements are

correct.

I also realize it would be even better if different people, using entirely separate brains,

were to derive the functional requirements and the tests from each use case. Disconnects

between their results could indicate ambiguities and omissions in the use case that lead to

different interpretations. I now know that I can begin testing a software application imme-

diately after I’ve written its first requirement. This surely beats testing at the end and then

spending a lot of time and money to fix the errors that originated in requirements.

I invite my product champion, Sarah, to review the tests I wrote for the chemists’ use

cases. She offers additional corrections and improvements. In a final workshop, all six

chemist representatives walk through the tests to make sure we all share a common men-

tal image of how the CTS would work. We all have different ideas of what the screens

might look like, and we’ll work through that when we get further into design. For now,

though, we feel confident that we all have the same expectations and understanding of

what the CTS will do for the chemists.

Act III: Look Over My Shoulder
Wherein we do lots of peer reviews to find as many requirement errors as we can.

Simply documenting the requirements an analyst hears during interviews or workshops

isn’t sufficient to give confidence that the requirements are correct. There are so many

opportunities for miscommunications and misunderstandings that validation is an essen-

tial step in the requirements development process. Peer reviews constitute one of the most

powerful mechanisms for finding errors in requirements. During a peer review, someone

other than the author of a work product examines that work product for possible defects

and improvement opportunities.

Peer reviews are a type of static testing, a way to filter out requirement problems before

writing the first line of code. Reviews provide a way for users to confirm that their input

has been interpreted and recorded properly. They also provide a way to detect ambiguous

,ch19.19556 Page 253 Thursday, February 12, 2009 3:09 PM

254 C H A P T E R N I N E T E E N

requirements, which helps all stakeholders reach a common understanding of what the

requirements are trying to say. If I could perform only one quality practice on a software

project, that practice would be formal peer review (also called inspection) of all require-

ments information. Given this appreciation of the power of peer reviews, we build them

into our requirements activities in two ways, informally and formally.

The Casual Style

Following each use case elicitation workshop, the analyst supplies the documents he or

she creates to the workshop participants. Such documents include use cases, portions of a

growing SRS, graphical analysis models, data definitions, and other knowledge acquired

during the workshop. The workshop participants then examine these materials informally

on their own, looking for omissions, errors, misinterpretations, and any other issues.

And, boy, do we find a lot of problems this way! Sometimes the analyst misunderstood

something or put his own twist of interpretation on the requirements, which the users

catch and correct. In other cases, a user realizes we overlooked an alternative flow for a

use case. Or perhaps he concludes that an error condition should be handled in some dif-

ferent way than we originally envisioned. Sometimes the act of reviewing the require-

ments triggers an idea for some additional functionality that users would find helpful.

These individual, incremental, informal, and inexpensive reviews greatly improve the

quality of our growing body of requirements information. The types of problems we find

also give us insights into how to improve our future requirements elicitation and specifica-

tion activities. In addition, the reviews provide clear evidence to Paul and the other project

stakeholders that we are making real progress on understanding and recording their

requirements for the CTS.

The analysts on the team try different review approaches. I am holding workshops once

per week with my chemists. Within two days following each workshop I deliver my write-

up of the workshop outputs to the product champion and members of the backup team.

Reviewing these materials helps anyone who missed a workshop get caught up. My users

do a great job of finding errors, which they share with me at the beginning of the next

workshop.

Our least experienced analyst, Devon, takes a different tack. He’s holding daily workshops

with his users, so he must quickly write up the workshop information and get it to the

representatives to examine before they meet again the next day. This puts a lot of time

pressure on the participants. More significantly, Devon reports that his users aren’t finding

many problems. Unfortunately, the problems are there; the reviewers just aren’t catching

many of them.

The insight here is that when you review a document shortly after thinking intensely

about it (either while creating it as an author or while contributing to it as a workshop

participant), you don’t really review the document—you mentally recite it. You’re less

likely to find problems than if you get some mental “settling time” before revisiting it. In

contrast, when you come back to a document after a day or two, during which your short-

,ch19.19556 Page 254 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 255

term memory has faded, you look at it with a fresh perspective. You’re more likely to spot

disconnects, omissions, and other problems. Perhaps you’ve been mulling over the matter

in the back of your brain for the past couple of days and you have some ideas for how to

improve on the original work. Ever since I had this realization I’ve always tried to set my

own writing aside for at least 24 hours before I review it myself. This helps me look at it

with a sharper eye than if I review it immediately after writing.

The Formal Style

The type of individual, informal peer review I described in the preceding section is called a

passaround. Our passarounds yield many improvements, but they aren’t a substitute for the

more rigorous type of team peer review, called an inspection. In an inspection, several partic-

ipants examine the work product on their own and then pool their observations and ques-

tions in a meeting. The interactions that take place during the inspection meeting often

result in discovering problems that no inspectors found during their individual preparation.

For requirements specifications, inspections provide another advantage: the ability to

catch ambiguities. An ambiguous requirement is one that can be interpreted in multiple

ways by different readers (or sometimes even by the same reader). Suppose each inspector

reads an ambiguous requirement on his own during a passaround review. The require-

ment makes sense to each of them, but it means something different to each of them.

Each reviewer will say, “This is fine,” and the ambiguity goes undetected. During an

inspection, though, one member of the team called the reader describes in his own words

what he thinks each requirement means. The other inspectors can compare the reader’s

interpretation against their own understanding. Sometimes this reveals a difference of

interpretation—an ambiguity—that could cause big problems if not caught until much

later.

Given these powerful benefits, we decide to inspect our compiled SRS. Janet takes respon-

sibility for editing together the partial requirements specifications and associated materials

that the three analysts have developed. We end up with a 50-page SRS, with about

another fifty pages of back matter, including analysis models, definitions, and other sup-

porting information.

We invite our four product champions, our three analysts, and one additional project

stakeholder to participate in the inspection. Eight is a fairly large inspection team. I have

performed inspections for several years, so I serve as the moderator, which helps keep us

on track. Devon serves as the recorder, logging the issues as they come up in the discus-

sion. We realize that we can’t possibly cover this volume of material in a single session, at

least not if we’re serious about scrutinizing it closely for problems. So we schedule three

inspection meetings on a Monday, Wednesday, and Friday in the same week, with a max-

imum duration of two and a half hours per meeting (this is still a fairly rapid inspection

rate). Marathon review meetings are useless because after a couple of hours, tired eyes

contribute little additional insight.

,ch19.19556 Page 255 Thursday, February 12, 2009 3:09 PM

256 C H A P T E R N I N E T E E N

Our inspection is a success, at least if one measures success by the number of errors

detected. Every error we fix now is one we won’t have to fix later on at considerably

greater cost and aggravation. Devon keeps running out of the room for more blank copies

of the inspection issues log. It’s a bit discouraging to find so many defects because we’ve all

worked hard on the requirements. But we also realize that each problem found at this

stage is a “good catch.”

The Outcome

Our inspection identifies no fewer than 223 defects and issues. Most are minor, but some

would have had a major impact on the project had we not found them at this early stage.

Finding so many errors makes us glad we took the time to look. It’s clear that the cost of

performing the inspection, although not trivial, greatly outweighs the potential loss had

those defects lingered into the final requirements we will present to developers and

testers.

Following the inspection meetings we correct the many errors the inspectors found. Paul

and the other product champions agree that the revised requirements documents accu-

rately state their requirements for the Chemical Tracking System, so far as those require-

ments are known today. Next we define a baseline for our SRS. A baseline doesn’t mean

that the specification is frozen or that changes can’t be made in the future. The reality is

that requirements will change, for many reasons. Customers might think of things they

forgot, analysts might get bright ideas for useful new functionality, we might spot more

requirement errors during design and coding, and the business itself can change during

the development period. But our baseline serves as an agreed-upon foundation for the

subsequent project work. Even though we acknowledge that the requirements are not

perfect, achieving this baseline milestone gives all the participants a good feeling that we

have accomplished what we set out to do on this important project. The requirements are

“good enough” for development of the Chemical Tracking System to continue.

Epilogue: Let’s Eat!
As time goes on during requirements elicitation, we detect a thawing of the ice we

encountered in our early conversations with Paul. He sees that we’re making real progress

in understanding both his needs and the needs of other CTS stakeholders. Paul observes

that the new techniques we’re using do a better job of eliciting the right requirements

than did the approach the earlier teams had taken. The result is that Paul believes the final

set of requirements really will, if properly implemented, let him comply with the govern-

ment reporting mandates, as well as providing many other valuable services for a wide

variety of users.

We also experience a clear sign of a culture change as a result of our team approach to

requirements on the CTS. Shortly after baselining the SRS, Paul throws a lunch bash for

the analyst team, the product champions, and other key project participants. It’s quite a

spread. A good time is had by all and nobody goes home hungry. Paul’s mood is much

improved compared to that of four months earlier.

,ch19.19556 Page 256 Thursday, February 12, 2009 3:09 PM

S U C C E E D I N G W I T H R E Q U I R E M E N T S 257

Coda: Then What Happened?
Since I became an independent consultant in 1998, I have primarily worked with clients

on an intervention basis. I provide training, coaching, or assistance with a particular set of

requirements-related problems a client is experiencing. I often do not get to see how the

project turns out as a result of my involvement. That was true with the CTS project—at

first.

Following our successful requirements development effort, I moved on to other activities

and shortly thereafter moved to an entirely separate division within Contoso Pharmaceu-

ticals. Two years later I left Contoso and started my own software training and consulting

company. I use several examples from the Chemical Tracking System in my training

courses to illustrate techniques and insights for requirements development.

In 1999, I was presenting a requirements course at a client site. When I shared some of

our experiences on CTS, one student in the class said, “Hey, I recognize that project!” This

student happened to work in marketing. His previous employer was the company that

Contoso approached for outsourcing the implementation of part of the CTS. Intrigued by

this coincidence, I asked him how the implementation went and what the developers at

his former company thought of the CTS requirements. I was relieved when he said that

the project went well and that the requirements were a major factor in that success.

Despite its rocky beginning, the Chemical Tracking System turned out to be an illuminat-

ing case study. We learned how to selectively and thoughtfully apply several new require-

ments development methods. We found ways to effectively engage diverse customer

representatives in the process. We enjoyed some cultural benefits through our collabora-

tive approach, as Paul and the other lead customers realized that it was indeed possible—

nay, essential—to work closely with IT representatives to make sure that the right product

comes out the other end of the process. Best of all, this application is still in use at Contoso

Pharmaceuticals, 13 years after the requirements development experience described here.

Useful References
1. Ambler, Scott. 1995. “Reduce Development Costs with Use-Case Scenario Testing.”

Software Development 3(7):53–61.

2. Collard, Ross. 1999. “Test Design.” Software Testing and Quality Engineering 1(4):30–37.

3. Gottesdiener, Ellen. 2002. Requirements by Collaboration: Workshops for Defining Needs.

Boston: Addison-Wesley.

4. Kulak, Daryl, and Eamonn Guiney. 2004. Use Cases: Requirements in Context, Second

Edition. Boston: Addison-Wesley.

5. Wiegers, Karl E. 1996. Creating a Software Engineering Culture. New York: Dorset House

Publishing.

6. Wiegers, Karl E. 2002. Peer Reviews in Software: A Practical Guide. Boston: Addison-

Wesley.

,ch19.19556 Page 257 Thursday, February 12, 2009 3:09 PM

258 C H A P T E R N I N E T E E N

7. Wiegers, Karl E. 2003. Software Requirements, Second Edition. Redmond, WA: Microsoft

Press.

8. Wiegers, Karl E. 2006. More About Software Requirements: Thorny Issues and Practical

Advice. Redmond, WA: Microsoft Press.

Acknowledgments
I appreciate the many valuable review comments provided by Jim Brosseau, Barb Carde-

nuto, Chris Fahlbusch, Kathy Getz, Andre Gous, Shannon Jackson, Lori Schirmer, and

Moe Stankay.

,ch19.19556 Page 258 Thursday, February 12, 2009 3:09 PM

