
P A R T T W O

II.Goals

,part2.21217 Page 115 Thursday, February 12, 2009 3:10 PM

116

LET’S SAY THAT YOU’VE GOT A JOB TO DO, AND YOU NEED SOFTWARE TO DO IT. AND LET’S SAY THAT

you’ve got two choices. The first is a brilliantly engineered piece of software. It never

crashes, has a beautiful user interface, and has great technical support. It’s fast, a pleasure

to use, and inexpensive, and it runs on any operating system and practically any com-

puter. But it doesn’t do what you want. The second piece of software, on the other hand,

is terrible. It’s buggy, it crashes all the time, and it’s slow. It runs only on an obscure oper-

ating system, and needs a very expensive and very fast machine if you want it to be at all

usable. It’s got a terrible user interface that makes even the simplest task a chore. But it

does 20% of what you need. Which one do you choose?

Unfortunately for you, you’ll end up with the poorly written piece of software, because it

actually does something that you need it to do. And while this seems like a somewhat

ridiculous scenario, it’s actually not that far from the truth for a lot of us.

The worst possible mistakes in working with teams happen when your team’s goals

diverge. And, unfortunately, it’s a lot more common than a lot of us realize. This shouldn’t

really be a huge surprise. Anyone who’s cracked open a college textbook on software

engineering has probably seen a chart that shows that it gets exponentially more expen-

sive to fix a bug the longer it takes to realize that it’s in the software. But most experienced

programmers don’t need a textbook to tell them this—they’ve almost certainly seen it

firsthand.

One of the most common ways that software projects run into trouble is that people on

the team are trying to solve the wrong problem. Over the years, we’ve talked to dozens

and dozens of developers, testers, architects, project managers, and other software people

who all universally recognize that gut-wrenching feeling that happens when you deliver

what you think is the final product to the customer, only to have them say something like,

“Well, that looks very nice, but isn’t it also supposed to do…?” We all know the feeling of

our hearts sinking when we find out about that enormously important feature that

nobody told us about. Is there any experienced programmer among us who hasn’t had the

thought, “I would have built it entirely differently if someone had told me two months

ago that it was supposed to do that!”

If you’ve spent any time on an agile team, then you probably recognize the saying,

“Embrace change.” One reason that programmers on agile teams work well is that they

keep revisiting those goals. They’ll make sure those goals are out in front of everyone: the

team will make sure the goals are up on a whiteboard, and they’ll have meetings specifi-

cally to make sure they’re on top of any changes. And they get the customers involved in

the day-to-day project work, because that’s the most effective way to make sure that

everyone’s aligned to the same goals.

But even though we know how much those changes can damage the project, it’s far too

easy for us, as developers, to dismiss the idea of setting goals at the beginning of the

project. And it’s even easier for our own customers, users, and stakeholders to send us

down the wrong path before we even get a say in the matter.

,part2.21217 Page 116 Thursday, February 12, 2009 3:10 PM

117

Customers—the people who we’re building the software for—are not very good at telling

us what they need. They’ll ask for solutions instead of telling you what their problems are.

They’ll ask for a smoother, faster, less smelly horse and buggy, when what they really

want is a better vehicle that will get them from point A to point B. They don’t know

enough to ask for an automobile, and it’s all too easy to go about building a better, more

improved horse and buggy. A developer needs to know enough about the whole transpor-

tation problem to find a better solution.

On the other hand, we, as developers, have our own peculiar problems. It’s very easy for

us to think that we know exactly what software we’re about to build. We habitually inter-

rupt our customers halfway through their explanations and say, “OK, I understand what

you want.” Then we go off into our cubicles and build the software that we think they

need, only to find out that we completely misunderstood their problems. (We’ve done this

ourselves on rare occasions, usually because we really wanted to work with a particularly

cool new technology, and were basically looking for an excuse to play with it.)

So understanding your project’s goals is critically important, and the stories and interviews

in this section show us exactly how this affects our teams. It doesn’t matter how good the

software is, or if it’s the wrong software for the customer. One of the biggest challenges of

working with a team is keeping everyone aligned to that goal so that they build the right

software. And even the best teams can have conflicts around those goals, conflicts that can

tear a team apart. But if you align people to those goals from the beginning, and keep

everyone in the loop as they change—and they always change—the project is much more

likely to be a success.

,part2.21217 Page 117 Thursday, February 12, 2009 3:10 PM

118

,part2.21217 Page 118 Thursday, February 12, 2009 3:10 PM

