
P A R T T H R E E

III.Practices

,part3.21335 Page 181 Thursday, February 12, 2009 3:10 PM

182

ALL TEAMS—EVEN TEAMS WITH GREAT PEOPLE WHO WORK really well together—have habitual

problems. And when they do, the problems are bigger than the individual people on the

team. It’s both frustrating and difficult when you just know your team is technically capa-

ble of solving their problems, but somehow they keep succumbing to them.

That’s where changing the way you work can have a big impact on how your team works.

And that’s what practices are all about: finding a better way to do things so that your team

doesn’t get stuck on the same old problems.

The world is full of books about building software: some great, some good, some not so

good. The not-so-good books claim to tell you “the right way” to build software. The good

and even great ones will tell you that they have a good way—not necessarily the way—to

build software. What they all have in common is practices.

It’s pretty easy to get overwhelmed with practices, because it seems like there are dozens

of ways to do any one thing on a project. Just deciding how you’ll describe how your users

will use the software can be a challenge. Will you use user stories? Use cases? Textual use

cases or visual, UML-style use cases? Or maybe more traditional stimulus-response

sequences (which predate both use cases and user stories)? Do you write them down in a

document, or pin them to a wall? Do you use index cards? Post-its? An Excel spreadsheet?

There are literally dozens of ways to write down what amounts to the same information. It

all depends on how your team works best and there is definitely no single right answer.

And that’s just the problem of writing down how your users will interact with the soft-

ware. Almost every programmer has a different idea of a perfect code review. Or how to

document the architecture the team’s come up with. Or how to write down a project

schedule—some people hate, hate, hate Gantt charts, others can’t live without them.

It’s hard to overstate just how dangerous change can be to a team’s culture. In fact, not

just its culture; a change can threaten its very existence. There are two big risks that teams

face when they try to adopt a new practice. One is that the practice itself is stupid, but the

person pushing it doesn’t know that. One of the most popular and unfortunate practices

that teams suffer through is the useless status meeting. That’s not to say all status meetings

are useless. (Ask anyone on a well-run Scrum team, and they’ll tell you about their way of

having effective meetings!) But there are definitely status meetings that are universally

useless, usually done solely for the benefit of a project manager or senior executive.

Everyone on the team sits around a table, and each person waits his turn (usually check-

ing his email when he’s not speaking). When it’s a team member’s turn, that person sum-

marizes everything he did in the past week. It’s not clear whether that information is ever

recorded anywhere, but it’s generally not used for anything other than some senior man-

ager’s ego gratification. Nobody hears anything anyone else has said, and the whole thing

basically just sucks several hours a week of the team’s time, with no useful product

whatsoever.

,part3.21335 Page 182 Thursday, February 12, 2009 3:10 PM

183

A practice such as the useless status meeting is bad for the team, because invariably,

nobody ever asks anyone on the team if he gets anything out of it, or if it improves the

software. If someone did ask this question, the meeting would be halted immediately.

But what about when the practice is smart, and the people on the team just don’t get it?

That’s the second big pitfall. A lot of teams have run into exactly this problem when trying

to put code reviews in place. A lot of programmers agree that code reviews are a good

idea. Look at most successful, high-profile open source projects—for example, Apache,

Linux, and Firefox—and you’ll see a culture that’s built up around code reviews. But it’s

very common for a team to fail to actually put them in place, because the programmers

themselves moan and groan every time there’s a code review scheduled. When a code

review does happen, very little comes of it, because the people participating didn’t really

believe in its value, and didn’t work very hard to review the code. And that creates a self-

fulfilling prophecy: everyone decides that the code reviews don’t work, and stops doing

them. The same thing happens anytime the team doesn’t really believe in the value of the

new practice.

If you want to put a new practice in place on your team, you need to do two things. First,

you need to convince everyone on the team that it’s worth doing. And second, you need

to get the people who are paying the bills to understand the value of taking the extra time

and effort—or, in their view, money—to do the practices. Because a good practice pays for

itself in the long run, but that’s definitely not intuitive for a lot of people (especially ones

who don’t actually write the code). Try telling your boss that you want to adopt a new

practice that will cause it to take twice as long to build the project, but the testing and

deployment will go so much more quickly that it’ll be worth the extra time spent upfront,

and you’ll see what we mean.

It takes a visionary to see the value in a new practice. It takes a salesperson to convince

management to pay for it, and to convince the team to do it. And in a lot of cases, it takes

an above-average team to be open-minded enough to change the way they work.

The way your team chooses to work has a big impact on how successful your projects will

be. And although there’s not one correct way, if the team doesn’t come to some sort of

understanding about how they’ll build the software, they risk working against each other.

The stories and interviews in this section are about practices. But more than that, they’re

about teams finding their way to better practices that suit them, because there’s nothing

more dangerous to a team’s culture than imposing a change that doesn’t work for them.

We chose these stories because they’re about important, pioneering teams who did this

well, dramatically changed the way they worked, and had great results. These team lead-

ers saw serious, habitual problems that were preventing the teams from building better

software, and they found a way to get their people to embrace a better way of building it.

,part3.21335 Page 183 Thursday, February 12, 2009 3:10 PM

184

,part3.21335 Page 184 Thursday, February 12, 2009 3:10 PM

