Real World Haskell






7 EDITION

Real World Haskell

Bryan O'Sullivan, John Goerzen, and Don Stewart

O’REILLY"

Beijing - Cambridge + Farnham - KoIn - Sebastopol - Taipei - Tokyo



Real World Haskell
by Bryan O'Sullivan, John Goerzen, and Don Stewart

Copyright © 2007, 2008 Bryan O'SullivanJohn GoerzenDon Stewart. All rights reserved.

Editor: Mike Loukides

Printing History:

ISBN: 978---059-65149-83
1220034018



Table of Contents

Why functional programming? Why Haskell? ................ccoiiiiiiiiiiinn..s, Xiii
1. GettingStarted .......ooviviiiiiiiii i i i i e 1
Your Haskell environment 1
Getting started with ghci, the interpreter 2
Basic interaction: using ghci as a calculator 3
Command line editing in ghci 9
Lists 9
Strings and characters 11
First steps with types 12
A simple program 15
Exercises 16
2. TypesandFunctions ..........c.ccoviiiiiiiininnirnnnnnnnnns 17
Why care about types? 17
Haskell's type system 17
What to expect from the type system 20
Some common basic types 21
Function application 22
Useful composite data types: lists and tuples 23
Functions over lists and tuples 26
Function types and purity 27
Haskell source files, and writing simple functions 27
Understanding evaluation by example 32
Polymorphism in Haskell 36
The type of a function of more than one argument 38
Exercises 39
Why the fuss over purity? 39
Conclusion 40
3. Defining Types, Streamlining Functions ...............ccoviiiiiiiiiinnnn., 41
Defining a new data type 41




Type synonyms 43

Algebraic data types 44
Pattern matching 50
Record syntax 55
Parameterised types 57
Recursive types 58
Reporting errors 60
Introducing local variables 62
The offside rule and white space in an expression 64
The case expression 67
Common beginner mistakes with patterns 67
Conditional evaluation with guards 68
Exercises 69
4.,  Functional programming ...........coveiiiiniininiriinireenereenenannens 73
Thinking in Haskell 73
A simple command line framework 73
Warming up: portably splitting lines of text 74
Infix functions 78
Working with lists 79
How to think about loops 86
Anonymous (lambda) functions 101
Partial function application and currying 103
As-patterns 106
Code reuse through composition 107
Tips for writing readable code 110
Space leaks and strict evaluation 110
5. Writing a library: working with JSONdata .................coooiiiinne.s, 115
A whirlwind tour of JSON 115
Representing JSON data in Haskell 115
The anatomy of a Haskell module 117
Compiling Haskell source 118
Generating a Haskell program, and importing modules 118
Printing JSON data 119
Type inference is a double-edged sword 120
A more general look at rendering 122
Developing Haskell code without going nuts 123
Pretty printing a string 124
Arrays and objects, and the module header 126
Writing a module header 127
Fleshing out the pretty printing library 128
Creating a package 135

vi | Table of Contents



Practical pointers and further reading 138

Using Typeclasses ......ovuviiiiiiiiiiiiiiiiiiiiii i eiirniennennenns 139
The need for typeclasses 139
What are typeclasses? 140
Declaring typeclass instances 143
Important Built-In Typeclasses 143
Automatic Derivation 153
Typeclasses at work: making JSON easier to use 154
Living in an open world 156
How to give a type a new identity 160
JSON typeclasses without overlapping instances 163
The dreaded monomorphism restriction 166
Conclusion 168
0 e e 169
Classic I/O in Haskell 169
Working With Files and Handles 173
Extended Example: Functional I/O and Temporary Files 179
Lazy I/O 182
The IO Monad 187
Is Haskell Really Imperative? 192
Side Effects with Lazy I/O 192
Buffering 193
Reading Command-Line Arguments 194
Environment Variables 195
Efficient file processing, regular expressions, and file name matching .......... 197
Efficient file processing 197
File name matching 201
Regular expressions in Haskell 202
More about regular expressions 204
Translating a glob pattern into a regular expression 206
An important aside: writing lazy functions 209
Making use of our pattern matcher 210
Handling errors through API design 214
Putting our code to work 215
Exercises 216
/0 case study: a library for searching the filesystem ......................... 217
The find command 217
Starting simple: recursively listing a directory 217
A naive finding function 219

Table of Contents | vii



Predicates: from poverty to riches, while remaining pure 221

Sizing a file safely 223
A domain specific language for predicates 226
Controlling traversal 230
Density, readability, and the learning process 232
Another way of looking at traversal 233
Useful coding guidelines 236
Exercises 238
10. Code case study: parsing a binary dataformat .............................. 239
Greyscale files 239
Parsing a raw PGM file 240
Getting rid of boilerplate code 242
Implicit state 243
Introducing functors 248
Writing a functor instance for Parse 254
Using functors for parsing 255
Rewriting our PGM parser 256
Future directions 257
Exercises 258
11.  Testingand qualityassurance ...........ccooiviiiiiiiiiiiiniinieniennes 259
QuickCheck: type-based testing 259
Testing case study: specifying a pretty printer 263
Measuring test coverage with HPC 269
12. Barcoderecognition ..........c.ccuiiiiiiiiiiiiiiiii ittt 273
A little bit about barcodes 273
Introducing arrays 274
Encoding an EAN-13 barcode 279
Constraints on our decoder 279
Divide and conquer 280
Turning a colour image into something tractable 281
What have we done to our image? 284
Finding matching digits 286
Life without arrays or hash tables 292
Turning digit soup into an answer 296
Working with row data 299
Pulling it all together 300
A few comments on development style 301
13. DataStructures .........cooviiiiiiiiiiii i 303
Association Lists 303

viii | Table of Contents



14.

15.

16.

Maps

Functions Are Data, Too

Extended Example: /etc/passwd
Extended example: Numeric Types
Taking advantage of functions as data
General purpose sequences

Introduction

Revisiting earlier code examples
Looking for shared patterns

The Monad typeclass

And now, a jargon moment

Using a new monad: show your work!
Mixing pure and monadic code
Putting a few misconceptions to rest
Building the Logger monad

The Maybe monad

The list monad

Desugaring of do blocks

The state monad

Monads and functors

The monad laws, and good coding style

Programming withmonads ............................

Golfing practice: association lists
Generalised lifting

Looking for alternatives

Adventures in hiding the plumbing
Separating interface from implementation
The reader monad

A return to automated deriving

Hiding the IO monad

USiNg Parsec ..o.vvveieieinieneneerenenerererenenanans

First Steps with Parsec: Simple CSV Parsing

The sepBy and endBy Combinators

Choices and Errors

Extended Example: Full CSV Parser

Parsec and MonadPlus

Parsing an URL-encoded query string
Supplanting regular expressions for casual parsing
Parsing without variables

305
307
308
311
320
326

................. 329

329
329
331
333
334
335
338
340
340
341
344
348
350
357
359

................. 363

363
364
365
369
373
376
378
379

................. 387

387
390
391
395
397
397
399
399

Table of Contents | ix



17.

18.

19.

20.

21.

Applicative functors for parsing
Applicative parsing by example
Parsing JSON data

Parsing a HTTP request

Interfacingwith C:the FFl ..... ..ot

Foreign language bindings: the basics

Regular expressions for Haskell: a binding for PCRE
Passing string data between Haskell and C
Matching on strings

Monad transformers ..........cccoiiiiiiiiiiiii i i

Motivation: boilerplate avoidance

A simple monad transformer example

Common patterns in monads and monad transformers
Stacking multiple monad transformers

Moving down the stack

Understanding monad transformers by building one
Transformer stacking order is important

Putting monads and monad transformers into perspective

Errorhandling .......ccoiiiniiiiii i i i

Error Handling with Data Types
Exceptions

Exercises

Error handling in monads

Systems ProgramminginHaskell ...................cooviiiiiiiit,

Running External Programs
Directory and File Information
Program Termination

Dates and Times

Extended Example: Piping

UsingDatabases ..........cociiiiiiiiiiiiiiiiiiiiiiiii i

Overview of HDBC
Installing HDBC and Drivers
Connecting to Databases
Transactions

Simple Queries

SqlValues

Query Parameters

Prepared Statements

399
400
402
405

409
410
413
418
426

433
433
434
435
437
440
442
445
446

451
451
458
466
466

4n
471
472
473
474
480

495
495
496
496
497
498
499
499
500

X | Table of Contents



22.

23.

24.

25.

26.

Reading Results
Database Metadata
Error Handling

Extended Example: Web Client Programming ...........

Basic Types
The Database
The Parser
Downloading
Main Program

GUI Programming withgtk2hs ........................

Installing gtk2hs

Overview of the GTK+ Stack
User Interface Design with Glade
Event-Driven Programming
Initializing the GUI

The Add Podcast Window
Long-Running Tasks

Using Cabal

Exercises

Concurrent and multicore programming ................

Defining concurrency and parallelism
Concurrent programming with threads
Simple communication between threads
The main thread and waiting for other threads
Communicating over channels

Useful things to know about
Shared-state concurrency is still hard
Exercises

Using multiple cores with GHC

Parallel programming in Haskell
Parallel strategies and MapReduce

Profiling and optimization ...........................

Profiling Haskell programs
Controlling evaluation
Understanding Core
Advanced techniques: fusion

Advanced library design: building a Bloom filter .........

Introducing the Bloom filter

501
504
505

................... 507

508
508
512
515
517

................... 519

519
519
520
522
522
526
527
530
531

.................. 533

533
534
535
536
540
541
542
544
544
546
553

................... 563

563
572
578
581

................... 585

585

Table of Contents | xi



27.

28.

Use cases and package layout
Basic design

The ST monad

Designing an API for qualified import
Creating a mutable Bloom filter
The immutable API

Creating a friendly interface
Creating a Cabal package
Testing with QuickCheck
Performance analysis and tuning
Exercises

Socketsand Syslog .........coviiiiiiiiiiiiiiiiii

Basic Networking
Communicating with UDP
Communicating with TCP

Software transactionalmemory ........................

The basics

Some simple examples

STM and safety

Retrying a transaction

Choosing between alternatives
[/O and STM

Communication between threads
A concurrent web link checker
Practical aspects of STM

Installing GHC and Haskell libraries ......................

oooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooo

.................

586
586
588
589
590
591
592
600
603
608
614

615
615
615
620

627
627
628
630
630
632
633
634
634
642

xii | Table of Contents



Why functional programming? Why
Haskell?

Have we got a deal for you!

Haskell is a deep language, and we think that learning it is a hugely rewarding experi-
ence. We will focus on three elements as we explain why. The first is novelty: we invite
you to think about programming from a different and valuable perspective. The second
is power: we'll show you how to create software that is short, fast, and safe. Lastly, we
offer you a lot of fun: the pleasure of applying beautiful programming techniques to
solve real problems.

Novelty

Haskell is most likely quite different from any language you've ever used before. Com-
pared to the usual set of concepts in a programmer's mental toolbox, functional pro-
gramming offers us a profoundly different way to think about software.

In Haskell, we de-emphasise code that modifies data. Instead, we focus on functions
that take immutable values as input and produce new values as output. Given the same
inputs, these functions always return the same results. This is a core idea behind func-
tional programming.

Along with not modifying data, our Haskell functions usually don't talk to the external
world; we call these functions pure. We make a strong distinction between pure code
and the parts of our programs that read or write files, communicate over network con-
nections, or make robot arms move. This makes it easier to organize, reason about, and
test our programs.

We abandon some ideas that might seem fundamental, such as having a for loop built
into the language. We have other, more flexible, ways to perform repetitive tasks.

Even the way in which we evaluate expressions is different in Haskell. We defer every
computation until its result is actually needed: Haskell is a lazy language. Laziness is
not merely a matter of moving work around: it profoundly affects how we write pro-
grams.
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Power

Throughout this book, we will show you how Haskell's alternatives to the features of
traditional languages are powerful, flexible, and lead to reliable code. Haskell is posi-
tively crammed full of cutting edge ideas about how to create great software.

Since pure code has no dealings with the outside world, and the data it works with is
never modified, the kinds of nasty surprise in which one piece of code invisibly corrupts
data used by another are very rare. Whatever context we use a pure function in, it will
behave consistently.

Pure code is easier to test than code that deals with the outside world. When a function
only responds to its visible inputs, we can easily state properties of its behavior that
should always be true. We can automatically test that those properties hold for a huge
body of random inputs, and when our tests pass, we move on. We still use traditional
techniques to test code that must interact with files, networks, or exotic hardware.
Since there is much less of this impure code than we would find in a traditional lan-
guage, we gain much more assurance that our software is solid.

Lazy evaluation has some spooky effects. Let's say we want to find the k least-valued
elements of an unsorted list. In a traditional language, the obvious approach would be
to sort the list and take the first k elements, but this is expensive. For efficiency, we
would instead write a special function that takes these values in one pass, and it would
have to perform some moderately complex book-keeping. In Haskell, the sort-then-
take approach actually performs well: laziness ensures that the list will only be sorted
enough to find the k minimal elements.

Better yet, our Haskell code that operates so efficiently is tiny, and uses standard library
functions.

-- file: choo/KMinima.hs
-- lines beginning with "--

are comments.

minima k xs = take k (sort xs)

It can take a while to develop an intuitive feel for when lazy evaluation is important,
but when we exploit it, the resulting code is often clean, brief, and efficient.

As the above example shows, an important aspect of Haskell's power lies in the com-
pactness of the code we write. Compared to working in popular traditional languages,
when we develop in Haskell we often write much less code, in substantially less time,
and with fewer bugs.

Enjoyment

We believe that it is easy to pick up the basics of Haskell programming, and that you
will be able to successfully write small programs within a matter of hours or days.

xiv | Why functional programming? Why Haskell?



Since effective programming in Haskell differs greatly from other languages, you should
expect that mastering both the language itself and functional programming techniques
will require plenty of thought and practice.

Harking back to our own days of getting started with Haskell, the good news is that
the fun begins early: it's simply an entertaining challenge to dig into a new language,
in which so many commonplace ideas are different or missing, and to figure out how
to write simple programs.

For us, the initial pleasure lasted as our experience grew and our understanding deep-
ened. In other languages, it's difficult to see any connection between science and the
nuts-and-bolts of programming. In Haskell, we have imported some ideas from abstract
mathematics and put them to work. Even better, we find that not only are these ideas
easy to pick up, they have a practical payoff in helping us to write more compact,
reusable code.

Furthermore, we won't be putting any “brick walls” in your way: there are no especially
difficult or gruesome techniques in this book that you must master in order to be able
to program effectively.

That being said, Haskell is a rigorous language: it will make you perform more of your
thinking up front. It can take a little while to adjust to debugging much of your code
before you ever run it, in response to the compiler telling you that something about
your program does not make sense. Even with years of experience, we remain aston-
ished and pleased by how often our Haskell programs simply work on the first try, once
we fix those compilation errors.

What to expect from this book

We started this project because a growing number of people are using Haskell to solve
everyday problems. Because Haskell has its roots in academia, few of the Haskell books
that currently exist focus on the problems and techniques of everyday programming
that we're interested in.

With this book, we want to show you how to use functional programming and Haskell
to solve realistic problems. This is a hands-on book: every chapter contains dozens of
code samples, and many contain complete applications. Here are a few examples of the
libraries, techniques and tools that we'll show you how to develop.

* Create an application that downloads podcast episodes from the Internet, and
stores its history in an SQL database.

* Test your code in an intuitive and powerful way. Describe properties that ought to
be true, then let the QuickCheck library generate test cases automatically.

* Take a grainy phone camera snapshot of a barcode, and turn it into an identifier
that you can use to query a library or bookseller's web site.
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* Write code that thrives on the web. Exchange data with servers and clients written
in other languages using JSON notation. Develop a concurrent link checker.

A little bit about you

What will you need to know before reading this book? We expect that you already
know how to program, but if you've never used a functional language, that's fine.

No matter what your level of experience is, we have tried to anticipate your needs: we
go out of our way to explain new and potentially tricky ideas in depth, usually with
examples and images to drive our points home.

As a new Haskell programmer, you'll inevitably start out writing quite a bit of code by
hand for which you could have used a library function or programming technique, had
you just known of its existence. We've packed this book with information to help you
to come up to speed as quickly as possible.

Of course, there will always be a few bumps along the road. If you start out anticipating
an occasional surprise or difficulty along with the fun stuff, you will have the best
experience. Any rough patches you might hit won't last long.

As you become a more seasoned Haskell programmer, the way that you write code will
change. Indeed, over the course of this book, the way that we present code will evolve,
as we move from the basics of the language to increasingly powerful and productive
features and techniques.

What to expect from Haskell

Haskell is a general purpose programming language. It was designed without any ap-
plication niche in mind. Although it takes a strong stand on how programs should be
written, it does not favour one problem domain over others.

While at its core, the language encourages a pure, lazy style of functional programming,
this is the default, not the only option. Haskell also supports the more traditional mod-
els of procedural code and strict evaluation. Additionally, although the focus of the
language is squarely on writing statically typed programs, it is possible (though rarely
seen) to write Haskell code in a dynamically typed manner.

Compared to traditional static languages

Languages that use simple static type systems have been the mainstay of the program-
ming world for decades. Haskell is statically typed, but its notion of what types are for,
and what we can do with them, is much more flexible and powerful than traditional
languages. Types make a major contribution to the brevity, clarity, and efficiency of
Haskell programs.
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Although powerful, Haskell's type system is often also unobtrusive. If we omit explicit
type information, a Haskell compiler will automatically infer the type of an expression
or function. Compared to traditional static languages, to which we must spoon-feed
large amounts of type information, the combination of power and inference in Haskell's
type system significantly reduces the clutter and redundancy of our code.

Several of Haskell's other features combine to further increase the amount of work we
can fit into a screenful of text. This brings improvements in development time and
agility: we can create reliable code quickly, and easily refactor it in response to changing
requirements.

Sometimes, Haskell programs may run more slowly than similar programs written in
C or C++. For most of the code we write, Haskell's large advantages in productivity
and reliability outweigh any small performance disadvantage.

Multicore processors are now ubiquitous, but they remain notoriously difficult to pro-
gram using traditional techniques. Haskell provides unique technologies to make mul-
ticore programming more tractable. It supports parallel programming, software trans-
actional memory for reliable concurrency, and scales to hundreds of thousands of con-
current threads.

Compared to modern dynamic languages

Over the past decade, dynamically typed, interpreted languages have become increas-
ingly popular. They offer substantial benefits in developer productivity. Although this
often comes at the cost of a huge performance hit, for many programming tasks pro-
ductivity trumps performance, or performance isn't a significant factor in any case.

Brevity is one area in which Haskell and dynamically typed languages perform similarly:
in each case, we write much less code to solve a problem than in a traditional language.
Programs are often around the same size in dynamically typed languages and Haskell.

When we consider runtime performance, Haskell almost always has a huge advantage.
Code compiled by the Glasgow Haskell Compiler (GHC) is typically between 20 and
60 times faster than code run through a dynamic language's interpreter. GHC also
provides an interpreter, so you can run scripts without compiling them.

Another big difference between dynamically typed languages and Haskell lies in their
philosophies around types. A major reason for the popularity of dynamically typed
languages is that only rarely do we need to explicitly mention types. Through automatic
type inference, Haskell offers the same advantage.

Beyond this surface similarity, the differences run deep. In a dynamically typed lan-
guage, we can create constructs that are difficult to express in a statically typed lan-
guage. However, the same is true in reverse: with a type system as powerful as Haskell's,
we can structure a program in a way that would be unmanageable or infeasible in a
dynamically typed language.
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It's important to recognise that each of these approaches involves tradeoffs. Very briefly
put, the Haskell perspective emphasises safety, while the dynamically typed outlook
favours flexibility. If someone had already discovered one way of thinking about types
that was always best, we imagine that everyone would know about it by now.

Of course, we have our own opinions about which tradeoffs are more beneficial. Two
of us have years of experience programming in dynamically typed languages. We love
working with them; we still use them every day; but usually, we prefer Haskell.

Haskell in industry and open source

Here are just a few examples of large software systems that have been created in Haskell.
Some of these are open source, while others are proprietary products.

* ASIC and FPGA design software (Lava, products from Bluespec Inc.)

* Music composition software (Haskore)

* Compilers and compiler-related tools (most notably GHC)

¢ Distributed revision control (Darcs)

* Web middleware (HAppS, products from Galois Inc.)

is a sample of some of the companies using Haskell in late 2008, taken from the Haskell
wiki (http://lwww.haskell.org/haskellwiki/Haskell_in_industry).

* ABN AMRO is an international bank. It uses Haskell in investment banking, to
measure the counterparty risk on portfolios of financial derivatives.

* Anygma is a startup company. It develops multimedia content creation tools using
Haskell.

* Amgen is a biotech company. It creates mathematical models and other complex
applications in Haskell.

* Bluespec is an ASIC and FPGA design software vendor. Its products are developed
in Haskell, and the chip design languages that its products provide are influenced
by Haskell.

* Faton uses Haskell for the design and verification of hydraulic hybrid vehicle sys-
tems.

Compilation, debugging, and performance analysis

For practical work, almost as important as a language itself is the ecosystem of libraries
and tools around it. Haskell has a strong showing in this area.

The most widely used compiler, GHC, has been actively developed for over 15 years,
and provides a mature and stable set of features.

* Compiles to efficient native code on all major modern operating systems and CPU
architectures
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* FEasy deployment of compiled binaries, unencumbered by licensing restrictions
* Code coverage analysis

* Detailed profiling of performance and memory usage

* Thorough documentation

* Massively scalable support for concurrent and multicore programming

* Interactive interpreter and debugger

Bundled and third party libraries

The GHC compiler ships with a collection of useful libraries. Here are a few of the
common programming needs that these libraries address.

* File I/O, and filesystem traversal and manipulation

* Network client and server programming

* Regular expressions and parsing

* Concurrent programming

* Automated testing

* Sound and graphics
The Hackage package database is the Haskell community's collection of open source
libraries and applications. Most libraries published on Hackage are licensed under lib-
eral terms that permit both commercial and open source use. Some of the areas covered
by open source libraries include the following.

* Interfaces to all major open source and commercial databases

* XML, HTML, and XQuery processing

* Network and web client and server development

* Desktop GUIs, including cross-platform toolkits

* Support for Unicode and other text encodings

A brief sketch of Haskell's history

The development of Haskell is rooted in mathematics and computer science research.

Prehistory

A few decades before modern computers were invented, the mathematician Alonzo
Church developed a language called the lambda calculus. He intended it as a tool for
investigating the foundations of mathematics. The first person to realize the practical
connection between programming and the lambda calculus was John McCarthy, who
created Lisp in 1958.
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During the 1960s, computer scientists began to recognise and study the importance of
the lambda calculus. Peter Landin and Christopher Strachey developed ideas about the
foundations of programming languages: how to reason about what they do (operational
semantics) and how to understand what they mean (denotational semantics).

In the early 1970s, Robin Milner created a more rigorous functional programming lan-
guage named ML. While ML was developed to help with automated proofs of mathe-
matical theorems, it gained a following for more general computing tasks.

The 1970s saw the emergence of lazy evaluation as a novel strategy. David Turner
developed SASL and KRC, while Rod Burstall and John Darlington developed NPL and
Hope. NPL, KRC and ML influenced the development of several more languages in the
1980s, including Lazy ML, Clean, and Miranda.

Early antiquity

By the late 1980s, the efforts of researchers working on lazy functional languages were
scattered across more than a dozen languages. Concerned by this diffusion of effort, a
number of researchers decided to form a committee to design a common language.
After three years of work, the committee published the Haskell 1.0 specification in
1990. It named the language after Haskell Curry, an influential logician.

Many people are rightfully suspicious of “design by committee”, but the work of the
Haskell committee is a beautiful example of the best work a committee can do. They
produced an elegant, considered language design, and succeeded in unifying the frac-
tured efforts of their research community. Of the thicket of lazy functional languages
that existed in 1990, only Haskell is still actively used.

Since its publication in 1990, the Haskell language standard has seen five revisions,
most recently in 1998. A number of Haskell implementations have been written, and
several are still actively developed.

During the 1990s, Haskell served two main purposes. On one side, it gave language
researchers a stable language in which to experiment with making lazy functional pro-
grams run efficiently. Other researchers explored how to construct programs using lazy
functional techniques. Still others used it as a teaching language.

The modern era

While these basic explorations of the 1990s proceeded, Haskell remained firmly an
academic affair. The informal slogan of those inside the community was to “avoid
success at all costs”. Few outsiders had heard of the language at all. Indeed, functional
programming as a field was quite obscure.

During this time, the mainstream programming world experimented with relatively
small tweaks: from programming in C, to C++, to Java. Meanwhile, on the fringes,
programmers were beginning to tinker with new, more dynamic languages. Guido van
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Rossum designed Python; Larry Wall created Perl; and Yukihiro Matsumoto developed
Ruby.

As these newer languages began to seep into wider use, they spread some crucial ideas.
The first was that programmers are not merely capable of working in expressive lan-
guages; in fact, they flourish. The second was in part a byproduct of the rapid growth
in raw computing power of that era: it's often smart to sacrifice some execution per-
formance in exchange for a big increase in programmer productivity. Finally, several
of these languages borrowed from functional programming.

Over the past half a decade, Haskell has successfully escaped from academia, buoyed
in part by the visibility of Python, Ruby, and even Javascript. The language now has a
vibrant and fast-growing culture of open source and commercial users, and researchers
continue to use it to push the boundaries of performance and expressiveness.

Helpful resources

As you work with Haskell, you're sure to have questions and want more information
about things. Here are some Internet resources where you can look up information and
interact with other Haskell programmers.

Reference material

* The Haskell Hierarchical Libraries reference (http://www.haskell.org/ghc/docs/lat
est/html/libraries/index.html) provides the documentation for the standard library
that comes with your compiler. This is one of the most valuable online assets for
Haskell programmers.

* For questions about language syntax and features, the Haskell 98 Report (http://
haskell.org/onlinereport/) describes the Haskell 98 language standard.

* Various extensions to the language have become commonplace since the Haskell
98 Report was released. The GHC Users's Guide (http://www.haskell.org/ghc/docs/
latest/html/users_guide/index.html) contains detailed documentation on the exten-
sions supported by GHC, as well as some GHC-specific features.

* Hoogle (http://haskell.org/hoogle/) and Hayoo (http://holumbus.fh-wedel.de/hayoo/
hayoo.html) are Haskell API search engines. They can search for functions by name
or by type.

Applications and libraries

If you're looking for a Haskell library to use for a particular task, or an application
written in Haskell, check out the following resources.
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The Haskell community maintains a central repository of open source Haskell
libraries and applications. It's called Hackage (http://hackage.haskell.org/), and it
lets you search for software to download, or browse its collection by category.

The Haskell Wiki (http://haskell.org/haskellwiki/Applications_and_libraries) con-
tains a section dedicated to information about particular Haskell libraries.

The Haskell community

There are a number of ways you can get in touch with other Haskell programmers, to
ask questions, learn what other people are talking about, and simply do some social
networking with your peers.

The first stop on your search for community resources should be the Haskell web
site (http://www.haskell.org/). This page contains the most current links to various
communities and information, as well as a huge and actively maintained wiki.

Haskellers use a number of mailing lists (http://haskell.org/haskellwiki/Mailing
_lists) for topical discussions. Of these, the most generally interesting is named
haskell-cafe. It has a relaxed, friendly atmosphere, where professionals and aca-
demics rub shoulders with casual hackers and beginners.

For real-time chat, the Haskell IRC channel (http://haskell.org/haskellwiki/IRC
_channel), named #haskell, is large and lively. Like haskell-cafe, the atmosphere
stays friendly and helpful in spite of the huge number of concurrent users.

There are many local user groups, meetups, academic workshops, and the like;
here is a list of the known user groups and workshops (http://haskell.org/haskell
wiki/User_groups).

The Haskell Weekly News (http://sequence.complete.org/) is a very-nearly-weekly
summary of activities in the Haskell community. You can find pointers to inter-
esting mailing list discussions, new software releases, and the like.

The Haskell Communities and Activities Report (http://haskell.org/communities/)

collects information about people that use Haskell, and what they are doing with
it. It has been running for years, so it provides a good way to peer into Haskell's past.
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CHAPTER1
Getting Started

As you read the early chapters of this book, keep in mind that we will sometimes in-
troduce ideas in restricted, simplified form. Haskell is a deep language, and presenting
every aspect of a given subject all at once is likely to prove overwhelming. As we build
a solid foundation in Haskell, we will expand upon these initial explanations.

Your Haskell environment

Haskell is a language with many implementations, of which two are in wide use. Hugs
is an interpreter that is primarily used for teaching. For real applications, the Glasgow
Haskell Compiler (GHC) is much more popular. Compared to Hugs, GHC is more
suited to “real work”: it compiles to native code, supports parallel execution, and pro-
vides useful performance analysis and debugging tools. For these reasons, GHC is the
Haskell implementation that we will be using throughout this book.

GHC has three main components.
* ghcis an optimizing compiler that generates fast native code.
* ghci is an interactive interpreter and debugger.

* runghc is a program for running Haskell programs as scripts, without needing to
compile them first.

W8
s How werefer to the components of GHC
LA
DN N
065" When we discuss the GHC system as a whole, we will refer to it as

GHC. If we are talking about a specific command, we will mention ghc,
ghci, or runghc by name.

In this book, we assume that you're using at least version 6.8.2 of GHC, which was
released in 2007. Many of our examples will work unmodified with older versions.
However, we recommend using the newest version available for your platform. If you're
using Windows or Mac OS X, you can get started easily and quickly using a prebuilt




installer. To obtain a copy of GHC for these platforms, visit the GHC download page
(http://www.haskell.org/ghc/download.html), and look for the list of binary packages
and installers.

Many Linux distributors, and providers of BSD and other Unix variants, make custom
binary packages of GHC available. Because these are built specifically for each envi-
ronment, they are much easier to install and use than the generic binary packages that
are available from the GHC download page. You can find a list of distributions that
custom-build GHC at the GHC distribution packages (http://www.haskell.org/ghc/dis
tribution_packages.html) page.

For more detailed information about how to install GHC on a variety of popular plat-
forms, we've provided some instructions in Appendix A.

Getting started with ghci, the interpreter

The interactive interpreter for GHC is a program named ghci. It lets us enter and eval-
uate Haskell expressions, explore modules, and debug our code. If you are familiar with
Python or Ruby, ghci is somewhat similar to python and irb, the interactive Python and
Ruby interpreters.

W8

The ghci command has a narrow focus
LA

O
j

:‘ We typically cannot copy some code out of a Haskell source file and
paste it into ghci. This does not have a significant effect on debugging
pieces of code, but it can initially be surprising if you are used to, say,
the interactive Python interpreter.

On Unix-like systems, we run ghci as a command in a shell window. On Windows, it's
available via the Start Menu. For example, if you installed using the GHC installer on
Windows XP, you should go to “All Programs”, then “GHC”; you will then see ghci in
the list. (See “Windows for a screenshot.)

When we run ghci, it displays a startup banner, followed by a Prelude> prompt. Here,
we're showing version 6.8.3 on a Linux box.

$ ghci

GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.

Prelude>

The word Prelude in the prompt indicates that Prelude, a standard library of useful
functions, is loaded and ready to use. When we load other modules or source files, they
will show up in the prompt, too.
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Getting help

N
064" If you enter :? at the ghci prompt, it will print a long help message.

The Prelude module is sometimes referred to as “the standard prelude”, because its
contents are defined by the Haskell 98 standard. Usually, it's simply shortened to “the
prelude”.

W

About the ghci prompt

' ‘i“' The prompt displayed by ghci changes frequently depending on what
modules we have loaded. It can often grow long enough to leave little
visual room on a single line for our input.

For brevity and consistency, we have replaced ghci's default prompts
throughout this book with the prompt string ghci>.

Ifyouwant to do this youself, use ghci's : set prompt directive, as follows.

Prelude> :set prompt "ghci> "
ghci>

The prelude is always implicitly available; we don't need to take any actions to use the
types, values, or functions it defines. To use definitions from other modules, we must
load them into ghci, using the :module command.

ghci> :module + Data.Ratio

We can now use the functionality of the Data.Ratio module, which lets us work with
rational numbers (fractions).

Basic interaction: using ghci as a calculator

In addition to providing a convenient interface for testing code fragments, ghci can
function as a readily accessible desktop calculator. We can easily express any calculator
operation in ghci and, as an added bonus, we can add more complex operations as we
become more familiar with Haskell. Even using the interpreter in this simple way can
help us to become more comfortable with how Haskell works.

Simple arithmetic

We can immediately start entering expressions, to see what ghci will do with them.
Basic arithmetic works similarly to languages like C and Python: we write expressions
in infix form, where an operator appears between its operands.
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ghci> 2 + 2

4

ghci> 31337 * 101
3165037

ghci> 7.0 / 2.0
3.5

The infix style of writing an expression is just a convenience: we can also write an
expression in prefix form, where the operator precedes its arguments. To do this, we
must enclose the operator in parentheses.

ghci> 2 + 2

4

ghci> (+) 2 2

4
As the expressions above imply, Haskell has a notion of integers and floating point
numbers. Integers can be arbitrarily large. Here, (*) provides integer exponentiation.

ghci> 313 ~ 15
27112218957718876716220410905036741257

An arithmetic quirk: writing negative numbers

Haskell presents us with one peculiarity in how we must write numbers: it's often
necessary to enclose a negative number in parentheses. This affects us as soon as we
move beyond the simplest expressions.

We'll start by writing a negative number.

ghci> -3

-3
The - above is a unary operator. In other words, we didn't write the single number
“-3”; we wrote the number “3”, and applied the operator - to it. The - operator is
Haskell's only unary operator, and we cannot mix it with infix operators.

ghci> 2 + -3

<interactive>:1:0:
precedence parsing error
cannot mix “(+)' [infixl 6] and prefix *-' [infixl 6] in the same infix expression

If we want to use the unary minus near an infix operator, we must wrap the expression
it applies to in parentheses.

ghci> 2 + (-3)

-1

ghci> 3 + (-(13 * 37))

-478
This avoids a parsing ambiguity. When we apply a function in Haskell, we write the
name of the function, followed by its argument, for example f 3. If we did not need to
wrap a negative number in parentheses, we would have two profoundly different ways
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to read f-3: it could be either “apply the function f to the number -3”, or “subtract the
number 3 from the variable f”.

Most of the time, we can omit white space (“blank” characters such as space and tab)
from expressions, and Haskell will parse them as we intended. But not always. Here is
an expression that works:

ghci> 2*3

6
And here is one that seems similar to the problematic negative number example above,
but results in a different error message.

ghci> 2*-3
<interactive>:1:1: Not in scope: “*-'

Here, the Haskell implementation is reading *- as a single operator. Haskell lets us
define new operators (a subject that we will return to later), but we haven't defined
*-. Once again, a few parentheses get us and ghci looking at the expression in the same
way.

ghci> 2%(-3)

-6
Compared to other languages, this unusual treatment of negative numbers might seem
annoying, but it represents a reasoned trade-off. Haskell lets us define new operators
at any time. This is not some kind of esoteric language feature; we will see quite a few
user-defined operators in the chapters ahead. The language designers chose to accept
a slightly cumbersome syntax for negative numbers in exchange for this expressive
power.

Boolean logic, operators, and value comparisons

The values of Boolean logic in Haskell are True and False. The capitalization of these
names is important. The language uses C-influenced operators for working with Boo-
lean values: (88) is logical “and”, and (|]) is logical “or”.

ghci> True && False

False

ghci> False || True
True

While some programming languages treat the number zero as synonymous with
False, Haskell does not, nor does it consider a non-zero value to be True.

ghci> True && 1

<interactive>:1:8:
No instance for (Num Bool)
arising from the literal "1' at <interactive>:1:8
Possible fix: add an instance declaration for (Num Bool)
In the second argument of *(8&)', namely “1'
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In the expression: True 88 1
In the definition of “it': it = True & 1

Once again, we are faced with a substantial-looking error message. In brief, it tells us
that the Boolean type, Bool, is not a member of the family of numeric types, Num. The

error message is rather long because ghci is pointing out the location of the problem,
and hinting at a possible change we could make that might fix the problem.

Here is a more detailed breakdown of the error message.

* “No instance for (Num Bool)” tells us that ghci is trying to treat the numeric value
1 as having a Bool type, but it cannot.

1

* “arising from the literal '1'” indicates that it was our use of the number 1 that

caused the problem.
* “In the definition of “it'” refers to a ghci short cut that we will revisit in a few
pages.

W

Remain fearless in the face of error messages

' ‘?" We have an important point to make here, which we will repeat
throughout the early sections of this book. If you run into problems or
error messages that you do not yet understand, don't panic. Early on, all
you have to do is figure out enough to make progress on a problem. As
you acquire experience, you will find it easier to understand parts of
error messages that initially seem obscure.

The numerous error messages have a purpose: they actually help us in
writing correct code, by making us perform some amount of debugging
“up front”, before we ever run a program. If you are coming from a
background of working with more permissive languages, this way of
working may come as something of a shock. Bear with us.

Most of Haskell's comparison operators are similar to those used in C and the many
languages it has influenced.

ghci> 1 == 1

True

ghci> 2 < 3

True

ghci> 4 >= 3.99

True
One operator that differs from its C counterpart is “is not equal to”. In C, this is written
as !=. In Haskell, we write (/=), which resembles the # notation used in mathematics.

ghci> 2 /=3

True
Also, where C-like languages often use ! for logical negation, Haskell uses the not
function.
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ghci> not True
False

Operator precedence and associativity

Like written algebra and other programming languages that use infix operators, Haskell
has a notion of operator precedence. We can use parentheses to explicitly group parts
of an expression, and precedence allows us to omit a few parentheses. For example,
the multiplication operator has a higher precedence than the addition operator, so
Haskell treats the following two expressions as equivalent.

ghci> 1 + (4 * 4)

17

ghci> 1 + 4 * 4

17
Haskell assigns numeric precedence values to operators, with 1 being the lowest prec-
edence and 9 the highest. A higher-precedence operator is applied before a lower-prec-
edence operator. We can use ghci to inspect the precedence levels of individual oper-
ators, using its :info command.

ghci> :info (+)

class (Eq a, Show a) => Num a where

(+) ::a->a->a

-- Defined in GHC.Num
infixl 6 +
ghci> :info (*)
class (Eq a, Show a) => Num a where

(*) ::a->a->a

-- Defined in GHC.Num
infixl 7 *
The information we seek is in the line “infixl 6 +”, which indicates that the (+) op-
erator has a precedence of 6. (We will explain the other output in a later chapter.) The
“infixl 7 *” tells us that the (*) operator has a precedence of 7. Since (*) has a higher
precedence than (+), we can now see why 1 + 4 * 4is evaluated as 1 + (4 * 4), and
not (1 + 4) * 4.

Haskell also defines associativity of operators. This determines whether an expression
containing multiple uses of an operator is evaluated from left to right, or right to left.
The (+) and (*) operators are left associative, which is represented as infix1 in the
ghci output above. A right associative operator is displayed with infixr.

ghci> :info (*)

(*) :: (Num a, Integral b) =>a ->b -> a -- Defined in GHC.Real

infixr 8 #
The combination of precedence and associativity rules are usually referred to as fixity
rules.
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Undefined values, and introducing variables

Haskell's prelude, the standard library we mentioned earlier, defines at least one well-
known mathematical constant for us.

ghci> pi
3.141592653589793

But its coverage of mathematical constants is not comprehensive, as we can quickly
see. Let us look for Euler's number, e.

ghci> e
<interactive>:1:0: Not in scope: “e'

Oh well. We have to define it ourselves.

Don't worry about the error message

N
06" If the above “not in scope” error message seems a little daunting, do not
worry. All it means is that there is no variable defined with the name e.

Using ghci's let construct, we can make a temporary definition of e ourselves.
ghci> let e = exp 1

Thisis an application of the exponential function, exp, and our first example of applying
a function in Haskell. While languages like Python require parentheses around the
arguments to a function, Haskell does not.

With e defined, we can now use it in arithmetic expressions. The (*) exponentiation
operator that we introduced earlier can only raise a number to an integer power. To
use a floating point number as the exponent, we use the (**) exponentiation operator.
ghci> (e ** pi) - pi
19.99909997918947

% This syntax is ghci-specific
The syntax for let that ghci accepts is not the same as we would use at

the “top level” of a normal Haskell program. We will see the normal
syntax in “Introducing local variables.

Dealing with precedence and associativity rules

[t is sometimes better to leave at least some parentheses in place, even when Haskell
allows us to omit them. Their presence can help future readers (including ourselves) to
understand what we intended.
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Even more importantly, complex expressions that rely completely on operator prece-
dence are notorious sources of bugs. A compiler and a human can easily end up with
different notions of what even a short, parenthesis-free expression is supposed to do.

There is no need to remember all of the precedence and associativity rules numbers: it
is simpler to add parentheses if you are unsure.

Command line editing in ghci

On most systems, ghci has some amount of command line editing ability. In case you
are not familiar with command line editing, it's a huge time saver. The basics are com-
mon to both Unix-like and Windows systems. Pressing the arrow key on your
keyboard recalls the last line of input you entered; pressing repeatedly cycles
through earlier lines of input. You can use the|left|and arrow keys to move around
inside a line of input. On Unix (but not Windows, unfortunately), the key com-
pletes partially entered identifiers.

B
)

Where tolook for more information

[ \“}‘:' We've barely scratched the surface of command line editing here. Since
you can work more effectively if you're more familiar with the capabil-
ities of your command line editing system, you might find it useful to
do some further reading.

On Unix-like systems, ghci uses the GNU readline library (http://tiswww
.case.edu/php/chet/readline/rltop.html#Documentation), which is pow-
erful and customisable. On Windows, ghci's command line editing ca-
pabilities are provided by the doskey command (http://www.microsoft
.com/resources/documentation/windows/xp/all/proddocs/en-us/doskey
.mspx).

Lists

A list is surrounded by square brackets; the elements are separated by commas.

ghci> [1, 2, 3]
[1,2,3]

Commas are separators, not terminators

' ‘i' Some languages permit the last element in a list to be followed by an
optional trailing comma before a closing bracket, but Haskell doesn't
allow this. If you leave in a trailing comma (e.g. [1,2, ]), you'll get a parse
error.
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A list can be of any length. The empty list is written [].

ghci> []
[]

ghci> ["foo", "bar", "baz", "quux", "fnord", "xyzzy"]

["foo","bar","baz", "quux","fnord", "xyzzy"]

All elements of a list must be of the same type. Here, we violate this rule: our list starts
with two Bool values, but ends with a string.

ghci> [True, False, "testing"]

<interactive>:1:14:
Couldn't match expected type "Bool' against inferred type °[Char]’
In the expression: "testing"
In the expression: [True, False, "testing"]
In the definition of “it': it = [True, False, "testing"]

Once again, ghci's error message is verbose, but it's simply telling us that there is no
way to turn the string into a Boolean value, so the list expression isn't properly typed.

If we write a series of elements using enumeration notation, Haskell will fill in the con-
tents of the list for us.

ghci> [1..10]
[1,2,3,4,5,6,7,8,9,10]

Here, the .. characters denote an enumeration. We can only use this notation for types
whose elements we can enumerate. It makes no sense for text strings, for instance: there
is not any sensible, general way to enumerate [ "foo".."quux"].

By the way, notice that the above use of range notation gives us a closed interval; the
list contains both endpoints.

When we write an enumeration, we can optionally specify the size of the step to use by
providing the first two elements, followed by the value at which to stop generating the
enumeration.

ghci> [1.0,1.25..2.0]

[1.0,1.25,1.5,1.75,2.0]

ghci> [1,4..15]

[1,4,7,10,13]

ghci> [10,9..1]

[10,9,8,7,6,5,4,3,2,1]

In the latter case above, the list is quite sensibly missing the end point of the enumer-
ation, because it isn't an element of the series we defined.

We can omit the end point of an enumeration. If a type doesn't have a natural “upper
bound”, this will produce values indefinitely. For example, if you type [1..] at the
ghci prompt, you'll have to interrupt or kill ghci to stop it from printing an infinite
succession of ever-larger numbers. If you are tempted to do this, type |C| to halt the
enumeration. We will find later on that infinite lists are often useful in Haskell.
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Here's a non-intuitive bit of behaviour.

% Beware enumerating floating point numbers
[

ghci> [1.0..1.8]
[1.0,2.0]

Behind the scenes, to avoid floating point roundoff problems, the Has-
kell implementation enumerates from 1.0 to 1.8+0.5.

Using enumeration notation over floating point numbers can pack more
than a few surprises, so if you use it at all, be careful. Floating point
behavior is quirky in all programming languages; there is nothing
unique to Haskell here.

Operators on lists

There are two ubiquitous operators for working with lists. We concatenate two lists
using the (++) operator.

ghci> [3,1,3] ++ [3,7]

[3)1)3) 3) 7]

ghci> [] ++ [False,True] ++ [True]
[False,True,True]

More basic is the (:) operator, which adds an element to the front of a list. This is
pronounced “cons” (short for “construct”).

ghci> 1 : [2,3]

[1,2,3]

ghci> 1 : []

[1]
You might be tempted to try writing [1,2]:3 to add an element to the end of a list, but
ghci will reject this with an error message, because the first argument of (:) must be an
element, and the second must be a list.

Strings and characters

If you know a language like Perl or C, you'll find Haskell's notations for strings familiar.

A text string is surrounded by double quotes.

ghci> "This is a string."
"This is a string.”

As in many languages, we can represent hard-to-see characters by “escaping” them.
Haskell's escape characters and escaping rules follow the widely used conventions es-
tablished by the C language. For example, '\n' denotes a newline character, and
"\t' is a tab character. For complete details, see Appendix B.

ghci> putStrLn "Here's a newline -->\n<-- See?"

Here's a newline -->
<-- See?
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The putStrLn function prints a string.

Haskell makes a distinction between single characters and text strings. A single char-
acter is enclosed in single quotes.
ghci> 'a’

a

In fact, a text string is simply a list of individual characters. Here's a painful way to
write a short string, which ghci gives back to us in a more familiar form.

ghci> let a = ['1', 'o', "t', 's', ' ', 'o', F', ', W', o', 'r', 'k']

ghci> a

"lots of work"

ghci> a == "lots of work"
True

The empty string is written "", and is a synonym for [].

ghci> "" == []
True

Since a string is a list of characters, we can use the regular list operators to construct
new strings.

ghci> "a':"bc"

"abc”

ghci> "foo" ++ "bar"
"foobar"

First steps with types

While we've talked a little about types already, our interactions with ghci have so far
been free of much type-related thinking. We haven't told ghci what types we've been
using, and it's mostly been willing to accept our input.

Haskell requires type names to start with an uppercase letter, and variable names must
start with a lowercase letter. Bear this in mind as you read on; it makes it much easier
to follow the names.

The first thing we can do to start exploring the world of types is to get ghci to tell us
more about what it's doing. ghci has a command, :set, that lets us change a few of its
default behaviours. We can tell it to print more type information as follows.

ghci> :set +t
ghci> 'c'
T

it :: Char
ghci> "foo"
" 00"

it :: [Char]

What the +t does is tell ghci to print the type of an expression after the expression. That
cryptic it in the output can be very useful: it's actually the name of a special variable,
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in which ghci stores the result of the last expression we evaluated. (This isn't a Haskell
language feature; it's specific to ghci alone.) Let's break down the meaning of the last
line of ghci output.

* It's telling us about the special variable it.

e We can read text of the form x :: y as meaning “the expression x has the type y”.

* Here, the expression “it” has the type [Char]. (The name String is often used instead
of [Char]. It is simply a synonym for [Char].)

Thejoy of “it”

N
%' That it variable is a handy ghci shortcut. It lets us use the result of the
expression we just evaluated in a new expression.

ghci> "foo"

"foo"

it :: [Char]
ghci> it ++ "bar"
"foobar"

it :: [Char]

When evaluating an expression, ghci won't change the value of it if the
evaluation fails. This lets you write potentially bogus expressions with
something of a safety net.

ghci> it
"foobar"
it :: [Char]
ghci> it ++ 3

<interactive>:1:6:
No instance for (Num [Char])
arising from the literal “3' at <interactive>:1:6
Possible fix: add an instance declaration for (Num [Char])
In the second argument of *(++)', namely "3’
In the expression: it ++ 3
In the definition of “it': it = it ++ 3
ghci> it
"foobar"
it :: [Char]
ghci> it ++ "baz"
"foobarbaz"
it :: [Char]

When we couple it with liberal use of the arrow keys to recall and edit
the last expression we typed, we gain a decent way to experiment in-
teractively: the cost of mistakes is very low. Take advantage of the op-
portunity to make cheap, plentiful mistakes when you're exploring the
language!

Here are a few more of Haskell's names for types, from expressions of the sort we've
already seen.
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ghci> 7 ~ 80

40536215597144386832065866109016673800875222251012083746192454448001

it :: Integer
Haskell's integer type is named Integer. The size of an Integer value is bounded only by
your system's memory capacity.

Rational numbers don't look quite the same as integers. To construct a rational number,
we use the (%) operator. The numerator is on the left, the denominator on the right.
ghci> :m +Data.Ratio
ghci> 11 % 29

11%29
it :: Ratio Integer

For convenience, ghci lets us abbreviate many commands, so we can write :m instead
of :module to load a module.

Notice two words on the right hand side of the :: above. We can read this as a
“Ratio of Integer”. We might guess that a Ratio must have values of type Integer as
both numerator and denominator. Sure enough, if we try to construct a Ratio where
the numerator and denominator are of different types, or of the same non-integral type,
ghci complains.

ghci> 3.14 % 8

<interactive>:1:0:
Ambiguous type variable “t' in the constraints:
“Integral t' arising from a use of %' at <interactive>:1:0-7
“Fractional t'
arising from the literal "3.14' at <interactive>:1:0-3
Probable fix: add a type signature that fixes these type variable(s)
ghci> 1.2 % 3.4

<interactive>:1:0:
Ambiguous type variable “t' in the constraints:
“Integral t' arising from a use of “%' at <interactive>:1:0-8
“Fractional t'
arising from the literal "3.4' at <interactive>:1:6-8
Probable fix: add a type signature that fixes these type variable(s)

Although it is initially useful to have :set +t giving us type information for every ex-
pression we enter, this is a facility we will quickly outgrow. After a while, we will often
know what type we expect an expression to have. We can turn off the extra type in-
formation at any time, using the :unset command.

ghci> :unset +t

ghci> 2
2

Even with this facility turned off, we can still get that type information easily when we
need it, using another ghci command.

ghci> :type 'a’
'a' :: Char
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ghci> "foo"

"foo"
ghci> :type it
it :: [Char]

The :type command will print type information for any expression we give it (including
it, as we see above). It won't actually evaluate the expression; it only checks its type
and prints that.

Why are the types reported for these two expressions different?

ghci> 3 + 2

5

ghci> :type it

it :: Integer

ghci> :type 3 + 2
3+2 :: (Numt) =>t

Haskell has several numeric types. For example, a literal number such as 1 could, de-
pending on the context in which it appears, be an integer or a floating point value.
When we force ghci to evaluate the expression 3 + 2, it has to choose a type so that it
can print the value, and it defaults to Integer. In the second case, we ask ghci to print
the type of the expression without actually evaluating it, so it does not have to be so
specific. It answers, in effect, “its type is numeric”. We will see more of this style of
type annotation in Chapter 6.

A simple program

Let's take a small leap ahead, and write a small program that counts the number of lines
in its input. Don't expect to understand this yet; it's just fun to get our hands dirty. In
a text editor, enter the following code into a file, and save it as WC.hs.

-- file: cho1/WC.hs
-- lines beginning with "--

"

are comments.

main = interact wordCount
where wordCount input = show (length (lines input)) ++ "\n"

Find or create a text file; let's call it quux.txt.

$ cat quux.txt
Teignmouth, England
Paris, France

Ulm, Germany

Auxerre, France
Brunswick, Germany
Beaumont-en-Auge, France
Ryazan, Russia

From a shell or command prompt, run the following command.

" Incidentally, what do these cities have in common?
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$ runghc WC < quux.txt

7

We have successfully written a simple program that interacts with the real world! In
the chapters that follow, we will successively fill the gaps in our understanding until
we can write programs of our own.

Exercises

1. Enter the following expressions into ghci. What are their types?

5+8
3*5+8
2+ 4
(+) 24
sqrt 16
succ 6

succ 7

pred 9

pred 8

sin (pi / 2)
truncate pi
round 3.5
round 3.4
floor 3.7
ceiling 3.3

2. From ghci, type :? to print some help. Define a variable, such as let x = 1, then
type :show bindings. What do you see?

3. The words function counts the number of words in a string. Modify the WC.hs
example to count the number of words in a file.

4. Modify the WC.hs example again, to print the number of characters in a file.
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CHAPTER 2
Types and Functions

Why care about types?

Every expression and function in Haskell has a type. For example, the value True has
the type Bool, while the value "foo" has the type String. The type of a value indicates
that it shares certain properties with other values of the same type. For example, we
can add numbers, and we can concatenate lists; these are properties of those types. We
say an expression “has type X”, or “is of type X”.

Before we launch into a deeper discussion of Haskell's type system, let's talk about why
we should care about types at all: what are they even for? At the lowest level, a computer
is concerned with bytes, with barely any additional structure. What a type system gives
us is abstraction. A type adds meaning to plain bytes: it lets us say “these bytes are
text”, “those bytes are an airline reservation”, and so on. Usually, a type system goes
beyond this to prevent us from accidentally mixing types up: for example, a type system
usually won't let us treat a hotel reservation as a car rental receipt.

The benefit of introducing abstraction is that it lets us forget or ignore low-level details.
IfTknow that a value in my program is a string, I don't have to know the intimate details
of how strings are implemented: I can just assume that my string is going to behave like
all the other strings I've worked with.

What makes type systems interesting is that they're not all equal. In fact, different type
systems are often not even concerned with the same kinds of problems. A programming
language's type system deeply colours the way we think, and write code, in that lan-
guage.

Haskell's type system allows us to think at a very abstract level: it permits us to write
concise, powerful programs.

Haskell's type system

There are three interesting aspects to types in Haskell: they are strong, they are static,
and they can be automatically inferred. Let's talk in more detail about each of these
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ideas. When possible, we'll present similarities between concepts from Haskell's type
system and related ideas in other languages. We'll also touch on the respective strengths
and weaknesses of each of these properties.

Strong types

When we say that Haskell has a strong type system, we mean that the type system
guarantees that a program cannot contain certain kinds of errors. These errors come
from trying to write expressions that don't make sense, such as using an integer as a
function. For instance, if a function expects to work with integers, and we pass it a
string, a Haskell compiler will reject this.

We call an expression that obeys a language's type rules well typed. An expression that
disobeys the type rules is ill typed, and will cause a type error.

Another aspect of Haskell's view of strong typing is that it will not automatically coerce
values from one type to another. (Coercion is also known as casting or conversion.)
For example, a C compiler will automatically and silently coerce a value of type int into
a float on our behalf if a function expects a parameter of type float, but a Haskell
compiler will raise a compilation error in a similar situation. We must explicitly coerce
types by applying coercion functions.

Strong typing does occasionally make it more difficult to write certain kinds of code.
For example, a classic way to write low-level code in the C language is to be given a
byte array, and cast it to treat the bytes as if they're really a complicated data structure.
This is very efficient, since it doesn't require us to copy the bytes around. Haskell's type
system does not allow this sort of coercion. In order to get the same structured view of
the data, we would need to do some copying, which would cost a little in performance.

The huge benefit of strong typing is that it catches real bugs in our code before they
can cause problems. For example, in a strongly typed language, we can't accidentally
use a string where an integer is expected.
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Weaker and stronger types

&
03" Tt is useful to be aware that many language communities have their own
definitions of a “strong type”. Nevertheless, we will speak briefly and
in broad terms about the notion of strength in type systems.

In academic computer science, the meanings of “strong” and “weak”
have a narrowly technical meaning: strength refers to how permissive a
type system is. A weaker type system treats more expressions as valid
than a stronger type system.

For example, in Perl, the expression "foo" + 2 evaluates to the number
2, but the expression "13foo" + 2 evaluates to the number 15. Haskell
rejects both expressions as invalid, because the (+) operator requires
both of its operands to be numeric. Because Perl's type system is more
permissive than Haskell's, we say that it is weaker under this narrow
technical interpretation.

The fireworks around type systems have their roots in ordinary English,
where people attach notions of value to the words “weak” and
“strong”: we usually think of strength as better than weakness. Many
more programmers speak plain English than academic jargon, and quite
often academics really are throwing brickbats at whatever type system
doesn'tsuit their fancy. The result is often that popular Internet pastime,
a flame war.

Static types

Having a static type system means that the compiler knows the type of every value and
expression at compile time, before any code is executed. A Haskell compiler or inter-
preter will detect when we try to use expressions whose types don't match, and reject
our code with an error message before we run it.

ghci> True 8& "false"

<interactive>:1:8:
Couldn't match expected type “Bool' against inferred type "[Char]'
In the second argument of " (8&)', namely "“false"'
In the expression: True 8& "false"
In the definition of “it': it = True && "false"

This error message is of a kind we've seen before. The compiler has inferred that the
type of the expression "false" is [Char]. The (8&) operator requires each of its operands
to be of type Bool, and its left operand indeed has this type. Since the actual type of
"false" does not match the required type, the compiler rejects this expression as ill
typed.

Static typing can occasionally make it difficult to write some useful kinds of code. In
languages like Python, “duck typing” is common, where an object acts enough like
another to be used as a substitute for it". Fortunately, Haskell's system of typeclasses,
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which we will cover in Chapter 6, provides almost all of the benefits of dynamic typing,
in a safe and convenient form. Haskell has some support for programming with truly
dynamic types, though it is not quite as easy as in a language that wholeheartedly
embraces the notion.

Haskell's combination of strong and static typing makes it impossible for type errors
to occur at runtime. While this means that we need to do a little more thinking “up
front”, it also eliminates many simple errors that can otherwise be devilishly hard to
find. It's a truism within the Haskell community that once code compiles, it's more
likely to work correctly than in other languages. (Perhaps a more realistic way of putting
this is that Haskell code often has fewer trivial bugs.)

Programs written in dynamically typed languages require large suites of tests to give
some assurance that simple type errors cannot occur. Test suites cannot offer complete
coverage: some common tasks, such as refactoring a program to make it more modular,
can introduce new type errors that a test suite may not expose.

In Haskell, the compiler proves the absence of type errors for us: a Haskell program
that compiles will not suffer from type errors when it runs. Refactoring is usually a
matter of moving code around, then recompiling and tidying up a few times until the
compiler gives us the “all clear”.

A helpful analogy to understand the value of static typing is to look at it as putting
pieces into a jigsaw puzzle. In Haskell, if a piece has the wrong shape, it simply won't
fit. In a dynamically typed language, all the pieces are 1x1 squares and always fit, so
you have to constantly examine the resulting picture and check (through testing)
whether it's correct.

Type inference

Finally, a Haskell compiler can automatically deduce the types of almostt all expres-
sions in a program. This process is known as type inference. Haskell allows us to ex-
plicitly declare the type of any value, but the presence of type inference means that this
is almost always optional, not something we are required to do.

What to expect from the type system

Our exploration of the major capabilities and benefits of Haskell's type system will span
anumber of chapters. Early on, you may find Haskell's types to be a chore to deal with.

" “If it walks like a duck, and quacks like a duck, then let's call it a duck.”

T Occasionally, we need to give the compiler a little information to help it to make a choice in understanding
our code.
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For example, instead of simply writing some code and running it to see if it works as
you might expect in Python or Ruby, you'll first need to make sure that your program
passes the scrutiny of the type checker. Why stick with the learning curve?

While strong, static typing makes Haskell safe, type inference makes it concise. The
result is potent: we end up with a language that's both safer than popular statically
typed languages, and often more expressive than dynamically typed languages. This is
a strong claim to make, and we will back it up with evidence throughout the book.

Fixing type errors may initially feel like more work than if you were using a dynamic
language. It might help to look at this as moving much of your debugging up front. The
compiler shows you many of the logical flaws in your code, instead of leaving you to
stumble across problems at runtime.

Furthermore, because Haskell can infer the types of your expressions and functions,
you gain the benefits of static typing without the added burden of “finger typing” im-
posed by less powerful statically typed languages. In other languages, the type system
serves the needs of the compiler. In Haskell, it serves you. The tradeoff is that you have
to learn to work within the framework it provides.

We will introduce new uses of Haskell's types throughout this book, to help us to write
and test practical code. As a result, the complete picture of why the type system is
worthwhile will emerge gradually. While each step should justify itself, the whole will
end up greater than the sum of its parts.

Some common basic types

In “First steps with types, we introduced a few types. Here are several more of the most
common base types.

* A Char value represents a Unicode character.

* A Bool value represents a value in Boolean logic. The possible values of type
Bool are True and False.

* ThelInttypeisused for signed, fixed-width integer values. The exact range of values
representable as Int depends on the system's longest “native” integer: on a 32-bit
machine, an Int is usually 32 bits wide, while on a 64-bit machine, it is usually 64
bits wide. The Haskell standard only guarantees that an Int is wider than 28 bits.
(There exist numeric types that are exactly 8, 16, and so on bits wide, in signed
and unsigned flavours; we'll get to those later.)

* An Integer value is a signed integer of unbounded size. Integers are not used as
often as Ints, because they are more expensive both in performance and space
consumption. On the other hand, Integer computations do not silently overflow,
so they give more reliably correct answers.

* Values of type Double are used for floating point numbers. A Double value is typ-
ically 64 bits wide, and uses the system's native floating point representation. (A
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narrower type, Float, also exists, but its use is discouraged; Haskell compiler writ-
ers concentrate more on making Double efficient, so Float is much slower.)

We have already briefly seen Haskell's notation for types in “First steps with types.
When we write a type explicitly, we use the notation expression :: MyType to say that
expression has the type MyType. If we omit the :: and the type that follows, a Haskell
compiler will infer the type of the expression.

ghci> :type 'a’

'a' :: Char

ghci> 'a' :: Char

a
ghci> [1,2,3] :: Int

<interactive>:1:0:
Couldn't match expected type "Int' against inferred type “[a]’
In the expression: [1, 2, 3] :: Int
In the definition of “it': it = [1, 2, 3] :: Int

The combination of : : and the type after it is called a type signature.

Function application

Now that we've had our fill of data types for a while, let's turn our attention to work-
ing with some of the types we've seen, using functions.

To apply a function in Haskell, we write the name of the function followed by its
arguments.

ghci> odd 3

True

ghci> odd 6
False

We don't use parentheses or commas to group or separate the arguments to a function;
merely writing the name of the function, followed by each argument in turn, is enough.
As an example, let's apply the compare function, which takes two arguments.

ghci> compare 2 3

LT

ghci> compare 3 3

EQ

ghci> compare 3 2

GT

If you're used to function call syntax in other languages, this notation can take a little
getting used to, but it's simple and uniform.

Function application has higher precedence than using operators, so the following two
expressions have the same meaning.

ghci> (compare 2 3) == LT
True
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ghci> compare 2 3 == LT

True
The above parentheses don't do any harm, but they add some visual noise. Sometimes,
however, we must use parentheses to indicate how we want a complicated expression
to be parsed.

ghci> compare (sqrt 3) (sqrt 6)
LT

This applies compare to the results of applying sqrt 3 and sqrt 6, respectively. If we
omit the parentheses, it looks like we are trying to pass four arguments to compare,
instead of the two it accepts.

Useful composite data types: lists and tuples

A composite data type is constructed from other types. The most common composite
data types in Haskell are lists and tuples.

We've already seen the list type mentioned in “Strings and characters, where we found
that Haskell represents a text string as a list of Char values, and that the type “list of
Char” is written [Char].

The head function returns the first element of a list.

ghci> head [1,2,3,4]

1

ghci> head ['a’,'b",'c']
Ty

Its counterpart, tail, returns all but the head of a list.

ghci> tail [1,2,3,4]

(2,3,4]

ghci> tail [2,3,4]

(3,4]

ghci> tail [True,False]

[False]

ghci> tail "list"

"ist"

ghci> tail []

*** Exception: Prelude.tail: empty list

As you can see, we can apply head and tail to lists of different types. Applying head to
a [Char] value returns a Char value, while applying it to a [Bool] value returns a Bool
value. The head function doesn't care what type of list it deals with.

Because the values in a list can have any type, we call the list type polymorphict. When
we want to write a polymorphic type, we use a type variable, which must begin with a

¥ We'll talk more about polymorphism in “Polymorphism in Haskell.
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lowercase letter. A type variable is a placeholder, where eventually we'll substitute a
real type.

We can write the type “list of a” by enclosing the type variable in square brackets:
[a]. This amounts to saying “I don't care what type I have; I can make a list with it”.

W o o . o .
Distinguishing type names and type variables
065" We can now see why a type name must start with an uppercase letter:

this makes it distinct from a type variable, which must start with a low-
ercase letter.

When we talk about a list with values of a specific type, we substitute that type for our
type variable. So, for example, the type [Int] is a list of values of type Int, because we
substituted Int for a. Similarly, the type [MyPersonalType] is a list of values of type
MyPersonalType. We can perform this substitution recursively, too: [[Int]] is a list of
values of type [Int], i.e. a list of lists of Int.

ghci> :type [[True],[False,False]]
[[True],[False,False]] :: [[Bool]]

The type of this expression is a list of lists of Bool.

W

Lists are special

' ‘i' Lists are the “bread and butter” of Haskell collections. In an imperative
language, we might perform a task many items by iterating through a
loop. This is something that we often do in Haskell by traversing a list,
either by recursing or using a function that recurses for us. Lists are the
easiest stepping stone into the idea that we can use data to structure our
program and its control flow. We'll be spending a lot more time discus-
sing lists in Chapter 4.

A tuple is a fixed-size collection of values, where each value can have a different type.
This distinguishes them from a list, which can have any length, but whose elements
must all have the same type.

To help to understand the difference, let's say we want to track two pieces of informa-
tion about a book. It has a year of publication, which is a number, and a title, which is
a string. We can't keep both of these pieces of information in a list, because they have
different types. Instead, we use a tuple.

ghci> (1964, "Labyrinths")
(1964, "Labyrinths")

We write a tuple by enclosing its elements in parentheses and separating them with
commas. We use the same notation for writing its type.
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ghci> :type (True, "hello")

(True, "hello") :: (Bool, [Char])

ghci> (4, ['a', 'm'], (16, True))

(4,"am", (16,True))
There's a special type, (), that acts as a tuple of zero elements. This type has only one
value, also written (). Both the type and the value are usually pronounced “unit”. If
you are familiar with C, () is somewhat similar to void.

Haskell doesn't have a notion of a one-element tuple. Tuples are often referred to using
the number of elements as a prefix. A 2-tuple has two elements, and is usually called a
pair. A “3-tuple” (sometimes called a triple) has three elements; a 5-tuple has five; and
so on. In practice, working with tuples that contain more than a handful of elements
makes code unwieldy, so tuples of more than a few elements are rarely used.

A tuple's type represents the number, positions, and types of its elements. This means
that tuples containing different numbers or types of elements have distinct types, as do
tuples whose types appear in different orders.

ghci> :type (False, 'a')

(False, 'a') :: (Bool, Char)

ghci> :type ('a', False)

('a', False) :: (Char, Bool)
In this example, the expression (False, 'a') has the type (Bool, Char), which is distinct
from the type of ('a’, False).Even though the number of elements and their types are
the same, these two types are distinct because the positions of the element types are
different.

ghci> :type (False, 'a', 'b")

(False, 'a', 'b"') :: (Bool, Char, Char)
This type, (Bool, Char, Char), is distinct from (Bool, Char) because it contains three
elements, not two.

We often use tuples to return multiple values from a function. We can also use them
any time we need a fixed-size collection of values, if the circumstances don't require a
custom container type.

Exercises
1. What are the types of the following expressions?
* False

* (["foo", "bar"], 'a')
* [(True, []), (False, [['a']])]
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Functions over lists and tuples

Our discussion of lists and tuples mentioned how we can construct them, but little
about how we do anything with them afterwards. We have only been introduced to
two list functions so far, head and tail.

A related pair of list functions, take and drop, take two arguments. Given a number n
and a list, take returns the first n elements of the list, while drop returns all but the first
n elements of the list. (As these functions take two arguments, notice that we separate
each function and its arguments using white space.)

ghci> take 2 [1,2,3,4,5]

[1,2]

ghci> drop 3 [1,2,3,4,5]

[4,5]
For tuples, the fst and snd functions return the first and second element of a pair,
respectively.

ghci> fst (1,'a")

1

ghci> snd (1,'a")

T
If your background is in any of a number of other languages, each of these may look
like an application of a function to two arguments. Under Haskell's convention for
function application, each one is an application of a function to a single pair.

W8

Haskell tuples aren'timmutable lists

[ ‘;“ If you are coming from the Python world, you'll probably be used to lists
and tuples being almost interchangeable. Although the elements of a
Python tuple are immutable, it can be indexed and iterated over using
the same methods as a list. This isn't the case in Haskell, so don't try to
carry that idea with you into unfamiliar linguistic territory.

As an illustration, take a look at the type signatures of fst and snd:
they're defined only for pairs, and can't be used with tuples of other sizes.
Haskell's type system makes it tricky to write a generalised “get the sec-
ond element from any tuple, no matter how wide” function.

Passing an expression to a function

In Haskell, function application is left associative. This is best illustrated by example:
the expressiona b ¢ dis equivalent to (((a b) ¢) d). If we want to use one expression
as an argument to another, we have to use explicit parentheses to tell the parser what
we really mean. Here's an example.

ghci> head (drop 4 "azerty")
Th
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We can read this as “pass the expression drop 4 "azerty" as the argument to head”. If
we were to leave out the parentheses, the offending expression would be similar to
passing three arguments to head. Compilation would fail with a type error, as head
requires a single argument, a list.

Function types and purity

Let's take a look at a function's type.

ghci> :type lines

lines :: String -> [String]
We can read the -> above as “to”, which loosely translates to “returns”. The signature
as a whole thus reads as “lines has the type String to list-of-String”. Let's try applying
the function.

ghci> lines "the quick\nbrown fox\njumps"

["the quick","brown fox","jumps"]
The lines function splits a string on line boundaries. Notice that its type signature gave
us a hint as to what the function might actually do: it takes one String, and returns
many. This is an incredibly valuable property of types in a functional language.

A side effect introduces a dependency between the global state of the system and the
behaviour of a function. For example, let's step away from Haskell for a moment and
think about an imperative programming language. Consider a function that reads and
returns the value of a global variable. If some other code can modify that global variable,
then the result of a particular application of our function depends on the current value
of the global variable. The function has a side effect, even though it never modifies the
variable itself.

Side effects are essentially invisible inputs to, or outputs from, functions. In Haskell,
the default is for functions to not have side effects: the result of a function depends only
on the inputs that we explicitly provide. We call these functions pure; functions with
side effects are impure.

If a function has side effects, we can tell by reading its type signature: the type of the
function's result will begin with I0.

ghci> :type readFile
readFile :: FilePath -> IO String

Haskell's type system prevents us from accidentally mixing pure and impure code.

Haskell source files, and writing simple functions

Now that we know how to apply functions, it's time we turned our attention to writing
them. While we can write functions in ghci, it's not a good environment for this. It only
accepts a highly restricted subset of Haskell: most importantly, the syntax it uses for
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defining functions is not the same as we use in a Haskell source fileS. Instead, we'll
finally break down and create a source file.

Haskell source files are usually identified with a suffix of .hs. Here's a simple function
definition: open up a file named add.hs, and add these contents to it.

-- file: cho3/add.hs
addab=a+b

On the left hand side of the = is the name of the function, followed by the arguments
to the function. On the right hand side is the body of the function. With our source file
saved, we can load itinto ghci, and use our new add function straight away. (The prompt
that ghci displays will change after you load your file.)

ghci> :load add.hs

[1 of 1] Compiling Main ( add.hs, interpreted )

Ok, modules loaded: Main.

ghci> add 1 2

What if ghci cannot find your source file?

[ :‘ When you run ghci it may not be able to find your source file. It will
search for source files in whatever directory it was run. If this is not the
directory that your source file is actually in, you can use ghci's :cd com-
mand to change its working directory.

ghci> :ed /tmp

Alternatively, you can provide the path to your Haskell source file as the
argument to :load. This path can be either absolute or relative to ghci's
current directory.

When we apply add to the values 1 and 2, the variables a and b on the left hand side of
our definition are given (or “bound to”) the values 1 and 2, so the result is the expression
1+ 2.

Haskell doesn't have a return keyword, as a function is a single expression, not a se-
quence of statements. The value of the expression is the result of the function. (Haskell
does have a function called return, but we won't discuss it for a while; it has a different
meaning than in imperative languages.)

When you see an = symbol in Haskell code, it represents “meaning”: the name on the
left is defined to be the expression on the right.

§ The environment in which ghci operates is called the IO monad. In Chapter 7, we will cover the 10 monad
in depth, and the seemingly arbitrary restrictions that ghci places on us will make more sense.
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Just what is a variable, anyway?

In Haskell, a variable provides a way to give a name to an expression. Once a variable
is bound to (i.e. associated with) a particular expression, its value does not change: we
can always use the name of the variable instead of writing out the expression, and get
the same result either way.

If you're used to imperative programming languages, you're likely to think of a variable
as a way of identifying a memory location (or some equivalent) that can hold different
values at different times. In an imperative language we can change a variable's value at
any time, so that examining the memory location repeatedly can potentially give dif-
ferent results each time.

The critical difference between these two notions of a variable is that in Haskell, once
we've bound a variable to an expression, we know that we can always substitute it for
that expression, because it will not change. In an imperative language, this notion of
substitutability does not hold.

For example, if we run the following tiny Python script, it will print the number 11.

X =10
X =11
# value of x is now 11
print x

In contrast, trying the equivalent in Haskell results in an error.

-- file: cho2/Assign.hs
X =10
X =11

We cannot assign a value to x twice.

ghci> :load Assign
[1 of 1] Compiling Main ( Assign.hs, interpreted )

Assign.hs:4:0:
Multiple declarations of “Main.x'
Declared at: Assign.hs:3:0
Assign.hs:4:0
Failed, modules loaded: none.

Conditional evaluation

Like many other languages, Haskell has an if expression. Let's see it in action, then
we'll explain what's going on. As an example, we'll write our own version of the standard
drop function. Before we begin, let's probe a little into how drop behaves, so we can
replicate its behaviour.

ghci> drop 2 "foobar"

"obar"
ghci> drop 4 "foobar"
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nop
ghci> drop 4 [1,2]
(]

ghci> drop 0 [1,2]
[1,2]

ghci> drop 7 []

(]

ghci> drop (-2) "foo"
" 00"

From the above, it seems that drop returns the original list if the number to remove is
less than or equal to zero. Otherwise, it removes elements until either it runs out or
reaches the given number. Here's a myDrop function that has the same behaviour, and
uses Haskell's if expression to decide what to do. The null function below checks
whether a list is empty.
-- file: cho2/myDrop.hs
myDrop n xs = if n <= 0 || null xs
then xs
else myDrop (n - 1) (tail xs)

In Haskell, indentation is important: it continues an existing definition, instead of start-
ing a new one. Don't omit the indentation!

You might wonder where the variable name xs comes from in the Haskell function.
This is a common naming pattern for lists: you can read the s as a suffix, so the name
is essentially “plural of x”.

Let's save our Haskell function in a file named myDrop.hs, then load it into ghci.

ghci> :load myDrop.hs

[1 of 1] Compiling Main ( myDrop.hs, interpreted )
0k, modules loaded: Main.
ghci> myDrop 2 "foobar"
"obar"

ghci> myDrop 4 "foobar"
Wt

ghci> myDrop 4 [1,2]

[]

ghci> myDrop 0 [1,2]
[1,2]

ghci> myDrop 7 []

[]

ghci> myDrop (-2) "foo"
"foo"

Now that we've seen myDrop in action, let's return to the source code and look at all the
novelties we've introduced.

First of all, we have introduced --, the beginning of a single-line comment. This com-
ment extends to the end of the line.

Next is the if keyword itself. It introduces an expression that has three components.
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* An expression of type Bool, immediately following the if. We refer to this as a
predicate.

* A then keyword, followed by another expression. This expression will be used as
the value of the if expression if the predicate evaluates to True.

* Anelse keyword, followed by another expression. This expression will be used as
the value of the if expression if the predicate evaluates to False.

We'll refer to the expressions after the then and else keywords as “branches”. The
branches must have the same types; the if expression will also have this type. An ex-
pression such as if True then 1 else "foo" has different types for its branches, so it
is ill typed and will be rejected by a compiler or interpreter.

Recall that Haskell is an expression-oriented language. In an imperative language, it
can make sense to omit the else branch from an if, because we're working with state-
ments, not expressions. However, when we're working with expressions, an if that was
missing an else wouldn't have a result or type if the predicate evaluated to False, so it
would be nonsensical.

Our predicate contains a few more novelties. The null function indicates whether a list
is empty, while the (| |) operator performs a logical “or” of its Bool-typed arguments.
ghci> :type null
null :: [a] -> Bool

ghci> :type (]1)
(||) :: Bool -> Bool -> Bool

W

Operators are not special

&
063" Notice that we were able to find the type of (||) by wrapping it in pa-
rentheses. The (||) operator isn't “built into” the language: it's an or-
dinary function.

The (||) operator “short circuits”: if its left operand evaluates to True,
it doesn't evaluate its right operand. In most languages, short-circuit
evaluation requires special support, but not in Haskell. We'll see why
shortly.

Next, our function applies itself recursively. This is our first example of recursion,
which we'll talk about in some detail shortly.

Finally, our if expression spans several lines. We align the then and else branches
under the if for neatness. So long as we use some indentation, the exact amount is not
important. If we wish, we can write the entire expression on a single line.

-- file: cho2/myDrop.hs
myDropX n xs = if n <= 0 || null xs then xs else myDropX (n - 1) (tail xs)
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The length of this version makes it more difficult to read. We will usually break an if
expression across several lines to keep the predicate and each of the branches easier to
follow.

For comparison, here is a Python equivalent of the Haskell myDrop. The two are struc-
tured similarly: each decrements a counter while removing an element from the head
of the list.
def myDrop(n, elts):
while n > 0 and elts:
n=n-1
elts = elts[1:]
return elts

Understanding evaluation by example

In our description of myDrop, we have so far focused on surface features. We need to go
deeper, and develop a useful mental model of how function application works. To do
this, we'll first work through a few simple examples, until we can walk through the
evaluation of the expression myDrop 2 “"abcd".

We've talked several times about substituting an expression for a variable, and we'll
make use of this capability here. Our procedure will involve rewriting expressions over
and over, substituting expressions for variables until we reach a final result. This would
be a good time to fetch a pencil and paper, so that you can follow our descriptions by
trying them yourself.

Lazy evaluation

We will begin by looking at the definition of a simple, nonrecursive function.

-- file: cho2/RoundToEven.hs
isOdd n =mod n 2 == 1

Here, mod is the standard modulo function. The first big step to understanding how
evaluation works in Haskell is figuring out what the result of evaluating the expression
is0dd (1 + 2)is.

Before we explain how evaluation proceeds in Haskell, let us recap the sort of evaluation
strategy used by more familiar languages. First, evaluate the subexpression 1 + 2, to
give 3. Then apply the odd function with n bound to 3. Finally, evaluate mod 3 2 to give
1,and 1 == 1 to give True.

In a language that uses strict evaluation, the arguments to a function are evaluated
before the function is applied. Haskell chooses another path: non-strict evaluation.

In Haskell, the subexpression 1 + 2 is not reduced to the value 3. Instead, we create a
<« : » 3 . . [

promise” that when the value of the expression is0dd (1 + 2) is needed, we'll be able
to compute it. The record that we use to track an unevaluated expression is referred to
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as a thunk. This is all that happens: we create a thunk, and defer the actual evaluation
until it's really needed. If the result of this expression is never subsequently used, we
will not compute its value at all.

Non-strict evaluation is often referred to as lazy evaluationl,

A more involved example

Let us now look at the evaluation of the expression myDrop 2 "abcd", where we use
print to ensure that it will be evaluated.

ghci> print (myDrop 2 "abcd")

hed"
Our first step is to attempt to apply print, which needs its argument to be evaluated.
To do that, we apply the function myDrop to the values 2 and "abcd". We bind the variable
n to the value 2, and xs to "abcd". If we substitute these values into myDrop's predicate,
we get the following expression.

ghci> :type 2 <=0 || null "abcd"
2 <=0 || null "abcd" :: Bool

We then evaluate enough of the predicate to find out what its value is. This requires
that we evaluate the (||) expression. To determine its value, the (||) operator needs
to examine the value of its left operand first.

ghci> 2 <=0
False

Substituting that value into the (| |) expression leads to the following expression.

ghci> :type False || null "abcd"
False || null "abcd" :: Bool

If the left operand had evaluated to True, (]|) would not need to evaluate its right
operand, since it could not affect the result of the expression. Since it evaluates to False,
(] 1) must evaluate the right operand.

ghci> null "abcd"

False

We now substitute this value back into the (| |) expression. Since both operands eval-
uate to False, the (||) expression does too, and thus the predicate evaluates to False.

ghci> False || False
False

This causes the if expression's else branch to be evaluated. This branch contains a
recursive application of myDrop.

I The terms “non-strict” and “lazy” have slightly different technical meanings, but we won't go into the details
of the distinction here.
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Short circuiting for free

[ ?" Many languages need to treat the logical-or operator specially so that it
short circuits if its left operand evaluates to True. In Haskell, (|]) is an
ordinary function: non-strict evaluation builds this capability into the
language.

In Haskell, we can easily define a new function that short circuits.

-- file: cho2/shortCircuit.hs
newOr a b = if a then a else b

If we write an expression like new0r True (length [1..] > 0),itwill not
evaluate its second argument. (This is just as well: that expression tries
to compute the length of an infinite list. If it were evaluated, it would
hang ghci, looping infinitely until we killed it.)

Were we to write a comparable function in, say, Python, strict evalua-
tion would bite us: both arguments would be evaluated before being
passed to new0r, and we would not be able to avoid the infinite loop on
the second argument.

Recursion

When we apply myDrop recursively, nis bound to the thunk 2 - 1,and xs to tail "abed".

We're now evaluating myDrop from the beginning again. We substitute the new values

of n and xs into the predicate.

ghci> :type (2 - 1) <= 0 || null (tail "abcd")
(2 - 1) <=0 || null (tail "abcd") :: Bool

Here's a condensed version of the evaluation of the left operand.

ghci> :type (2 - 1) <= 0
(2 -1) <=0 :: Bool
ghci> 2 - 1

1

ghci> 1 <=0

False

As we should now expect, we didn't evaluate the expression 2 - 1 until we needed its
value. We also evaluate the right operand lazily, deferring tail "abcd" until we need

its value.

ghci> :type null (tail "abcd")
null (tail "abcd") :: Bool
ghci> tail "abcd"

"bed"

ghci> null "bcd"

False

The predicate again evaluates to False, causing the else branch to be evaluated once

more.
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Because we've had to evaluate the expressions for n and xs to evaluate the predicate,
we now know that in this application of myDrop, n has the value 1 and xs has the value
n bcd n A

Ending the recursion

In the next recursive application of myDrop, we bind nto 1 - 1 and xs to tail "bcd".

ghci> :type (1 - 1) <= 0 || null (tail "bcd")
(1 - 1) <=0 || null (tail "bcd") :: Bool
Once again, (||) needs to evaluate its left operand first.
ghci> :type (1 - 1) <= 0
(1 -1) <=0 :: Bool
ghci> 1 - 1
0
ghci> 0 <= 0
True

Finally, this expression has evaluated to True!

ghci> True || null (tail "bcd")
True

Because the right operand cannot affect the result of (|]), it is not evaluated, and the
result of the predicate is True. This causes us to evaluate the then branch.

ghci> :type tail "bcd"
tail "bcd" :: [Char]

Returning from the recursion

Remember, we're now inside our second recursive application of myDrop. This applica-
tion evaluates to tail "bcd". We return from the application of the function, substi-
tuting this expression for myDrop (1 - 1) (tail "bcd"), to become the result of this
application.

ghci> myDrop (1 - 1) (tail "bcd") == tail "bcd"

True
We then return from the first recursive application, substituting the result of the second
recursive application for myDrop (2 - 1) (tail "abcd"), to become the result of this
application.

ghci> myDrop (2 - 1) (tail "abcd") == tail "bcd"

True
Finally, we return from our original application, substituting the result of the first re-
cursive application.

ghci> myDrop 2 "abcd" == tail "bcd"
True
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Notice that as we return from each successive recursive application, none of them needs
to evaluate the expression tail "bcd": the final result of evaluating the original expres-
sion is a thunk. The thunk is only finally evaluated when ghci needs to print it.

ghci> myDrop 2 "abcd"

hed"

ghci> tail "bcd"
" eg

What have we learned?
We have established several important points here.
* Tt makes sense to use substitution and rewriting to understand the evaluation of a
Haskell expression.

* Laziness leads us to defer evaluation until we need a value, and to evaluate just
enough of an expression to establish its value.

* The result of applying a function may be a thunk (a deferred expression).

Polymorphism in Haskell

When we introduced lists, we mentioned that the list type is polymorphic. We'll talk
about Haskell's polymorphism in more detail here.

If we want to fetch the last element of a list, we use the last function. The value that
it recurns must have the same type as the elements of the list, but last operates in the
same way no matter what type those elements actually are.

ghci> last [1,2,3,4,5]

5
ghci> last "baz"

z

To capture this idea, its type signature contains a type variable.

ghci> :type last
last :: [a] -> a

Here, a is the type variable. We can read the signature as “takes a list, all of whose
elements have some type a, and returns a value of the same type a”.
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Identifying a type variable

[ ?" Type variables always start with a lowercase letter. You can always tell
a type variable from a normal variable by context, because the languages
of types and functions are separate: type variables live in type signatures,
and regular variables live in normal expressions.

It's common Haskell practice to keep the names of type variables very
short. One letter is overwhelmingly common; longer names show up
infrequently. Type signatures are usually brief; we gain more in reada-
bility by keeping names short than we would by making them descrip-
tive.

When a function has type variables in its signature, indicating that some of its argu-
ments can be of any type, we call the function polymorphic.

When we want to apply last to, say, a list of Char, the compiler substitutes Char for
each a throughout the type signature, which gives us the type of last with an input of
[Char] as [Char] -> Char.

This kind of polymorphism is called parametric polymorphism. The choice of naming
is easy to understand by analogy: just as a function can have parameters that we can
later bind to real values, a Haskell type can have parameters that we can later bind to
other types.

B
)

Alittlenomenclature

N
06" If a type contains type parameters, we say that it is a parameterised type,
or a polymorphic type. If a function or value's type contains type pa-
rameters, we call it polymorphic.

When we see a parameterised type, we've already noted that the code doesn't care what
the actual type is. However, we can make a stronger statement: it has no way to find
out what the real type is, or to manipulate a value of that type. It can't create a value;
neither can it inspect one. All it can do is treat it as a fully abstract “black box”. We'll
cover one reason that this is important soon.

Parametric polymorphism is the most visible kind of polymorphism that Haskell sup-
ports. Haskell's parametric polymorphism directly influenced the design of the generic
facilities of the Java and C# languages. A parameterised type in Haskell is similar to a
type variable in Java generics. C++ templates also bear a resemblance to parametric
polymorphism.

To make it clearer how Haskell's polymorphism differs from other languages, here are
a few forms of polymorphism that are common in other languages, but not present in
Haskell.
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In mainstream object oriented languages, subtype polymorphism is more widespread
than parametric polymorphism. The subclassing mechanisms of C++ and Java give
them subtype polymorphism. A base class defines a set of behaviours that its subclasses
can modify and extend. Since Haskell isn't an object oriented language, it doesn't pro-
vide subtype polymorphism.

Also common is coercion polymorphism, which allows a value of one type to be im-
plicitly converted into a value of another type. Many languages provide some form of
coercion polymorphism: one example is automatic conversion between integers and
floating point numbers. Haskell deliberately avoids even this kind of simple automatic
coercion.

This is not the whole story of polymorphism in Haskell: we'll return to the subject in
Chapter 6.

Reasoning about polymorphic functions

In “Function types and purity, we talked about figuring out the behaviour of a function
based on its type signature. We can apply the same kind of reasoning to polymorphic
functions. Let's look again at fst.

ghci> :type fst

fst :: (a, b) -> a
First of all, notice that its argument contains two type variables, a and b, signifying that
the elements of the tuple can be of different types.

The result type of fst is a. We've already mentioned that parametric polymorphism
makes the real type inaccessible: st doesn't have enough information to construct a
value of type a, nor can it turn an a into a b. So the only possible valid behaviour
(omitting infinite loops or crashes) it can have is to return the first element of the pair.

Further reading

There is a deep mathematical sense in which any non-pathological function of type
(a,b) -> a must do exactly what fst does. Moreover, this line of reasoning extends to
more complicated polymorphic functions. The paper Wadler89 covers this procedure
in depth.

The type of a function of more than one argument

So far, we haven't looked much at signatures for functions that take more than one
argument. We've already used a few such functions; let's look at the signature of one,
take.

ghci> :type take
take :: Int -> [a] -> [a]
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It's pretty clear that there's something going on with an Int and some lists, but why are
there two -> symbols in the signature? Haskell groups this chain of arrows from right
to left; thatis, -> is right-associative. If we introduce parentheses, we can make it clearer
how this type signature is interpreted.

-- file: cho2/Take.hs

take :: Int -> ([a] -> [a])
From this, it looks like we ought to read the type signature as a function that takes one
argument, an Int, and returns another function. That other function also takes one
argument, a list, and returns a list of the same type as its result.

This is correct, but it's not easy to see what its consequences might be. We'll return to
this topic in “Partial function application and currying, once we've spent a bit of time
writing functions. For now, we can treat the type following the last -> as being the
function's return type, and the preceding types to be those of the function's arguments.

We can now write a type signature for the myDrop function that we defined earlier.

-- file: cho2/myDrop.hs
myDrop :: Int -> [a] -> [a]

Exercises

1. Haskell provides a standard function, last :: [a] -> a, that returns the last
element of a list. From reading the type alone, what are the possible valid be-
haviours (omitting crashes and infinite loops) that this function could have?
What are a few things that this function clearly cannot do?

Write a function lastButOne, that returns the element before the last.

Load your lastButOne function into ghci, and try it out on lists of different lengths.
What happens when you pass it a list that's too short?

Why the fuss over purity?

Few programming languages go as far as Haskell in insisting that purity should be the
default. This choice has profound and valuable consequences.

Because the result of applying a pure function can only depend on its arguments, we
can often get a strong hint of what a pure function does by simply reading its name and
understanding its type signature. As an example, let's look at not.

ghci> :type not
not :: Bool -> Bool

Even if we didn't know the name of this function, its signature alone limits the possible
valid behaviours it could have.

* Ignore its argument, and always return either True or False.
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* Return its argument unmodified.

* Negate its argument.

We also know that this function can not do some things: it cannot access files; it cannot
talk to the network; it cannot tell what time it is.

Purity makes the job of understanding code easier. The behaviour of a pure function
does not depend on the value of a global variable, or the contents of a database, or the
state of a network connection. Pure code is inherently modular: every function is self-
contained, and has a well-defined interface.

A non-obvious consequence of purity being the default is that working with impure
code becomes easier. Haskell encourages a style of programming in which we separate
code that must have side effects from code that doesn't need them. In this style, impure
code tends to be simple, with the “heavy lifting” performed in pure code.

Much of the risk in software lies in talking to the outside world, be it coping with bad
or missing data, or handling malicious attacks. Because Haskell's type system tells us
exactly which parts of our code have side effects, we can be appropriately on our guard.
Because our favoured coding style keeps impure code isolated and simple, our “attack
surface” is small.

Conclusion

In this chapter, we've had a whirlwind overview of Haskell's type system and much of
its syntax. We've read about the most common types, and discovered how to write
simple functions. We've been introduced to polymorphism, conditional expressions,
purity, and about lazy evaluation.

This all amounts to a lot of information to absorb. In Chapter 3, we'll build on this
basic knowledge to further enhance our understanding of Haskell.
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CHAPTER 3
Defining Types, Streamlining
Functions

Defining a new data type

Although lists and tuples are useful, we'll often want to construct new data types of our
own. This allows us to add structure to the values in our programs. Instead of using an
anonymous tuple, we can give a collection of related values a name and a distinct type.
Defining our own types also improves the type safety of our code: Haskell will not allow
us to accidentally mix values of two types that are structurally similar but have different
names.

For motivation, we'll consider a few kinds of data that a small online bookstore might
need to manage. We won't make any attempt at complete or realistic data definitions,
but at least we're tying them to the real world.

We define a new data type using the data keyword.

-- file: cho3/BookStore.hs
data BookInfo = Book Int String [String]
deriving (Show)

The BooklInfo after the data keyword is the name of our new type. We call BookInfo a
type constructor. Once we have defined a type, we will use its type constructor to refer
to it. As we've already mentioned, a type name, and hence a type constructor, must
start with a capital letter.

The Book that follows is the name of the value constructor (sometimes called a data
constructor). We use this to create a value of the BooklInfo type. A value constructor's
name must also start with a capital letter.

After Book, the Int, String, and [String] that follow are the components of the type. A
component serves the same purpose in Haskell as a field in a structure or class would
in anotherlanguage: it's a “slot” where we keep a value. (We'll often refer to components

as fields.)
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In this example, the Int represents a book's identifier (e.g. in a stock database), String
its title, and [String] the names of its authors.

To make the link to a concept we've already seen, the BookInfo type contains the same
components as a 3-tuple of type (Int, String, [String]), but it has a distinct type. We
can't accidentally (or deliberately) use one in a context where the other is expected. For
instance, a bookstore is also likely to carry magazines.

-- file: cho3/BookStore.hs

data MagazineInfo = Magazine Int String [String]
deriving (Show)

Even though this Magazinelnfo type has the same structure as our BookInfo type, Has-
kell treats the types as distinct because their type and value constructors have different
names.

W N
)

Deriving what?

&N
065" We'll explain the full meaning of deriving (Show) later, in “Show. For
now, it's enough to know that we need to tack this onto a type declara-
tion so that ghci will automatically know how to print a value of this

type.

We can create a new value of type BookInfo by treating Book as a function, and applying
it with arguments of types Int, String, and [String].
-- file: cho3/BookStore.hs

myInfo = Book 9780135072455 "Algebra of Programming"
["Richard Bird", "Oege de Moor"]

Once we have defined a type, we can experiment with it in ghci. We begin by using
the :load command to load our source file.

ghci> :load BookStore
[1 of 1] Compiling Main ( BookStore.hs, interpreted )
Ok, modules loaded: Main.

Remember the myInfo variable we defined in our source file? Here it is.

ghci> myInfo

Book 9780135072455 "Algebra of Programming” ["Richard Bird","Oege de Moor"]
ghci> :type myInfo

myInfo :: BookInfo

We can construct new values interactively in ghci, too.

ghci> Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]
Book 0 "The Book of Imaginary Beings" ["Jorge Luis Borges"]

The ghci command :type lets us see what the type of an expression is.

ghci> :type Book 1 "Cosmicomics" ["Italo Calvino"]
Book 1 "Cosmicomics" ["Italo Calvino"] :: BookInfo
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Remember that if we want to define a new variable inside ghci, the syntax is slightly
different from that of a Haskell source file: we need to put a let in front.

ghci> let cities = Book 173 "Use of Weapons" ["Iain M. Banks"]

To find out more about a type, we can use some of ghci's browsing capabilities.
The :info command gets ghci to tell us everything it knows about a name.

ghci> :info BookInfo

data BookInfo = Book Int String [String]

-- Defined at BookStore.hs:4:5-12
instance Show BookInfo -- Defined at BookStore.hs:4:5-12

We can also find out why we use Book to construct a new value of type BookStore.

ghci> :type Book
Book :: Int -> String -> [String] -> BookInfo

We can treat a value constructor as just another function, one that happens to create
and return a new value of the type we desire.

Naming types and values

When we introduced the type BookStore, we deliberately chose to give the type con-
structor BookStore a different name from the value constructor Book, purely to make it
obvious which was which.

However, in Haskell, the names of types and values are independent of each other. We
only use a type constructor (i.e. the type's name) in a type declaration or a type signature.
We only use a value constructor in actual code. Because these uses are distinct, there
is no ambiguity if we give a type constructor and a value constructor the same name.
If we are writing a type signature, we must be referring to a type constructor. If we are
writing an expression, we must be using the value constructor.

-- file: cho3/BookStore.hs
-- We will introduce the CustomerID type shortly.

data BookReview = BookReview BookInfo CustomerID String

This definition says that the type named BookReview has a value constructor that is
also named BookReview.

Not only is it legal for a value constructor to have the same name as its type constructor,
it's normal: you'll see this all the time in regular Haskell code.

Type synonyms

We can introduce a synonym for an existing type at any time, to give a type a more
descriptive name. For example, the String in our BookReview type doesn't tell us what
the string is for, but we can clarify this.
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-- file: cho3/BookStore.hs
type CustomerID = Int
type ReviewBody = String

data BetterReview = BetterReview BookInfo CustomerID ReviewBody

The type keyword introduces a type synonym. The new name is on the left of the =,
with the existing name on the right. The two names identify the same type, so type
synonyms are purely for making code more readable.

We can also use a type synonym to create a shorter name for a verbose type.

-- file: cho3/BookStore.hs
type BookRecord = (BookInfo, BookReview)

This states that we can use BookRecord as a synonym for the tuple (BookInfo, Book-
Review). A type synonym only creates a new name that refers to an existing type". We
still use the same value constructors to create a value of the type.

Algebraic data types

The familiar Bool is the simplest common example of a category of type called an
algebraic data type. An algebraic data type can have more than one value constructor.

-- file: cho3/Bool.hs
data Bool = False | True

The Bool type has two value constructors, True and False. Each value constructor is
separated in the definition by a | character, which we can read as “or”: we can construct
a Bool that has the value True, or the value False. When a type has more than one value
constructor, they are usually referred to as alternatives or cases. We can use any one of
the alternatives to create a value of that type.

N

Anote about naming

"4:‘3 Although the phrase “algebraic data type” is long, we're being careful
to avoid using the acronym “ADT”. That acronym is already widely
understood to stand for “abstract data type”. Since Haskell supports
both algebraic and abstract data types, we'll be explicit and avoid the
acronym entirely.

Each of an algebraic data type's value constructors can take zero or more arguments.
As an example, here's one way we might represent billing information.

-- file: cho3/BookStore.hs
type CardHolder = String
type CardNumber = String

" If you are familiar with C or C++, it is analogous to a typedef.
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type Address = [String]

data BillingInfo = CreditCard CardNumber CardHolder Address
| CashOnDelivery
| Invoice CustomerID
deriving (Show)

Here, we're saying that we support three ways to bill our customers. If they want to pay
by credit card, they must supply a card number, the holder's name, and the holder's
billing address as arguments to the CreditCard value constructor. Alternatively, they
can pay the person who delivers their shipment. Since we don't need to store any extra
information about this, we specify no arguments for the CashOnDelivery constructor.
Finally, we can send an invoice to the specified customer, in which case we need their
CustomerID as an argument to the Invoice constructor.

When we use a value constructor to create a value of type BillingInfo, we must supply
the arguments that it requires.

ghci> :type CreditCard

CreditCard :: CardNumber -> CardHolder -> Address -> BillingInfo

ghci> CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens", "England"]
CreditCard "2901650221064486" "Thomas Gradgrind" ["Dickens","England"]

ghci> :type it

it :: BillingInfo

ghci> Invoice

<interactive>:1:0:
No instance for (Show (CustomerID -> BillingInfo))
arising from a use of “print' at <interactive>:1:0-6
Possible fix:
add an instance declaration for (Show (CustomerID -> BillingInfo))
In the expression: print it
In a stmt of a 'do' expression: print it
ghci> :type it
it :: BillingInfo

The No instance error message arose because we did not supply an argument to the
Invoice constructor. As a result, we were trying to print the Invoice constructor itself.

That constructor requires an argument and returns a value, so it is a function. We
cannot print functions in Haskell, which is ultimately why the interpreter complained.

Tuples, algebraic data types, and when to use each

There is some overlap between tuples and user-defined algebraic data types. If we wan-
ted to, we could represent our BookInfo type from earlier as an (Int, String, [String])
tuple.

ghci> Book 2 "The Wealth of Networks" ["Yochai Benkler"]

Book 2 "The Wealth of Networks" ["Yochai Benkler"]

ghci> (2, "The Wealth of Networks", ["Yochai Benkler"])
(2,"The Wealth of Networks",["Yochai Benkler"])
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Algebraic data types allow us to distinguish between otherwise identical pieces of in-
formation. Two tuples with elements of the same type are structurally identical, so they
have the same type.

-- file: cho3/Distinction.hs

a = ("Porpoise", "Grey")
b = ("Table", "0Oak")

Since they have different names, two algebraic data types have distinct types, even if
they are otherwise structurally equivalent.
-- file: cho3/Distinction.hs

data Cetacean = Cetacean String String
data Furniture = Furniture String String

non

c = Cetacean "Porpoise" "Grey"
d = Furniture "Table" "Oak"

This lets us bring the type system to bear in writing programs with fewer bugs. With
the tuples we defined above, we could conveivably pass a description of a whale to a
function expecting a chair, and the type system could not help us. With the algebraic
data types, there is no such possibility of confusion.

Here is a more subtle example. Consider the following representations of a two-di-
mensional vector.

-- file: cho3/AlgebraicVector.hs

-- x and y coordinates or lengths.

data Cartesian2D = Cartesian2D Double Double
deriving (Eq, Show)

-- Angle and distance (magnitude).
data Polar2D = Polar2D Double Double
deriving (Eq, Show)

The Cartesian and polar forms use the same types for their two elements. However, the
meanings of the elements are different. Because Cartesian2D and Polar2D are distinct
types, the type system will not let us accidentally use a Cartesian2D value where a
Polar2D is expected, or vice versa.

ghci> Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

<interactive>:1:33:
Couldn't match expected type "Cartesian2D'
against inferred type “Polar2D’
In the second argument of *(==)', namely "Polar2D (pi / 4) 2'
In the expression:
Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

In the definition of “it':

it = Cartesian2D (sqrt 2) (sqrt 2) == Polar2D (pi / 4) 2

The (==) operator requires its arguments to have the same type.

46 | Chapter3: Defining Types, Streamlining Functions



Comparing for equality

&
063" Notice thatin the deriving clause for our vector types, we added another
word, Eq. This causes the Haskell implementation to generate code that
lets us compare the values for equality.

If we used tuples to represent these values, we could quickly land ourselves in hot water
by mixing the two representations inappropriately.

ghci> (1, 2) == (1, 2)

True
The type system can't rescue us here: as far as it's concerned, we're comparing two
(Double, Double) pairs, which is a perfectly valid thing to do. Indeed, we cannot tell
by inspection which of these values is supposed to be polar or Cartesian, but (1,2) has
a different meaning in each representation.

There is no hard and fast rule for deciding when it's better to use a tuple or a distinct
data type, but here's a rule of thumb to follow. If you're using compound values widely
in your code (as almost all non-trivial programs do), adding data declarations will ben-
efit you in both type safety and readability. For smaller, localised uses, a tuple is usually
fine.

Analogues to algebraic data types in other languages

Algebraic data types provide a single powerful way to describe data types. Other lan-
guages often need several different features to achieve the same degree of expressive-
ness. Here are some analogues from C and C++, which might make it clearer what we
can do with algebraic data types, and how they relate to concepts that might be more
familiar.

The structure

With just one constructor, an algebraic data type is similar to a tuple: it groups related
values together into a compound value. It corresponds to a struct in C or C++, and
its components correspond to the fields of a struct. Here's a C equivalent of the Book-
Info type that we defined earlier.
struct book_info {
int id;
char *name;
char **authors;
};
The main difference between the two is that the fields in the Haskell type are anony-
mous and positional.
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-- file: cho3/BookStore.hs
data BookInfo = Book Int String [String]
deriving (Show)

By positional, we mean that the section number is in the first field of the Haskell type,
and the title is in the second. We refer to them by location, not by name.

In “Pattern matching, we'll see how to access the fields of a BookStore value. In “Record
syntax, we'll introduce an alternate syntax for defining data types that looks a little
more C-like.

The enumeration

Algebraic data types also serve where we'd use an enumin C or C++, to represent a range
of symbolic values. Such algebraic data types are sometimes referred to as enumeration
types. Here's an example from C.

enum roygbiv {

red,

orange,
yellow,
green,
blue,

indigo,
violet,

};
And here's a Haskell equivalent.
-- file: cho3/Roygbiv.hs

data Roygbiv = Red
| Orange

| Yellow

| Green

| Blue

| Indigo

| Violet

deriving (Eq, Show)

We can try these out in ghci.

ghci> :type Yellow
Yellow :: Roygbiv
ghci> :type Red

Red :: Roygbiv
ghci> Red == Yellow
False

ghci> Green == Green
True

In C, the elements of an enum are integers. We can use an integer in a context where an
enumis expected, and vice versa: a C compiler will automatically convert values between
the two types. This can be a source of nasty bugs. In Haskell, this kind of problem does
not occur. For example, we cannot use a Roygbiv value where an Int is expected.
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ghci> take 3 "foobar"
" 00"
ghci> take Red "foobar"

<interactive>:1:5:
Couldn't match expected type "Int' against inferred type “Roygbiv'
In the first argument of “take', namely “Red'
In the expression: take Red "foobar"
In the definition of “it': it = take Red "foobar"

The discriminated union

If an algebraic data type has multiple alternatives, we can think of it as similar to a
unionin Cor C++. A big difference between the two is that a union doesn't tell us which
alternative is actually present; we have to explicitly and manually track which alterna-
tive we're using, usually in another field of an enclosing struct. This means that unions
can be sources of nasty bugs, where our notion of which alternative we should be using
is incorrect.
enum shape_type {
shape_circle,
shape_poly,
5
struct circle {
struct vector centre;
float radius;

};

struct poly {
size t num_vertices;
struct vector *vertices;

b

struct shape

{
enum shape_type type;
union {
struct circle circle;
struct poly poly;
} shape;

b

In the example above, the union can contain valid data for either a struct circle ora
struct poly. We have to use the enum shape_type by hand to indicate which kind of
value is currently stored in the union.

The Haskell version of this code is both dramatically shorter and safer than the C
equivalent.

-- file: cho3/ShapeUnion.hs
type Vector = (Double, Double)
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data Shape = Circle Vector Double
| Poly [Vector]

If we create a Shape value using the Circle constructor, the fact that we created a
Circle is stored. When we later use a Circle, we can't accidentally treat it as a Square.
We will see why in “Pattern matching

W N

A fewnotes

[ ‘i‘ From reading the preceding sections, it should now be clear that all of
the data types that we define with the data keyword are algebraic data
types. Some may have just one alternative, while others have several,
but they're all using the same machinery.

Pattern matching

Now that we've seen how to construct values with algebraic data types, let's discuss
how we work with these values. If we have a value of some type, there are two things
we would like to be able to do.

* If the type has more than one value constructor, we need to be able to tell which
value constructor was used to create the value.

* If the value constructor has data components, we need to be able to extract those
values.

Haskell has a simple, but tremendously useful, pattern matching facility that lets us do
both of these things.

A pattern lets us look inside a value and bind variables to the data it contains. Here's
an example of pattern matching in action on a Bool value: we're going to reproduce the
not function.

-- file: cho3/add.hs

myNot True = False
myNot False = True

It might seem that we have two functions named myNot here, but Haskell lets us define
a function as a series of equations: these two clauses are defining the behavior of the
same function for different patterns of input. On each line, the patterns are the items
following the function name, up until the = sign.

To understand how pattern matching works, let's step through an example, say myNot
False.

When we apply myNot, the Haskell runtime checks the value we supply against the value
constructor in the first pattern. This does not match, so it tries against the second
pattern. That match succeeds, so it uses the right hand side of that equation as the
result of the function application.
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Here is a slightly more extended example. This function adds together the elements of
a list.
-- file: cho3/add.hs

sumList (x:xs) = x + sumList xs
sumList [] =0

Letus step through the evaluation of sumList [1,2]. Thelistnotation [1,2] isshorthand
for the expression (1:(2:[])). We begin by trying to match the pattern in the first
equation of the definition of sumList. In the (x:xs) pattern, the “:” is the familiar list
constructor, (:). We are now using it to match against a value, not to construct one.
The value (1:(2:[])) was constructed with (:), so the constructor in the value matches
the constructor in the pattern. We say that the pattern matches, or that the match

succeeds.

The variables x and xs are now “bound to” the constructor's arguments, so x is given
the value 1, and xs the value 2:[].

The expression we are now evaluatingis1 + sumList (2:[]). We must now recursively
apply sumList to the value 2:[]. Once again, this was constructed using (:), so the
match succeeds. In our recursive application of sumList, x is now bound to 2, and xs

to [].

We are now evaluating 1 + (2 + sumList []). In this recursive application of
sumList, the value we are matching againstis [ ]. The value's constructor does not match
the constructor in the first pattern, so we skip this equation. Instead, we “fall
through” to the next pattern, which matches. The right hand side of this equation is
thus chosen as the result of this application.

The result of sumList [1,2] isthus1 + (2 + (0)), or 3.

N

Ordering is important

"‘i‘ As we have already mentioned, a Haskell implementation checks pat-
terns for matches in the order in which we specify them in our equations.
Matching proceeds from top to bottom, and stops at the first success.
Equations below a successful match have no effect.

As a final note, there already exists a standard function, sum, that performs this sum-
of-a-list for us. Our sumList is purely for illustration.

Construction and deconstruction

Let's step back and take a look at the relationship between constructing a value and
pattern matching on it.
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We apply a value constructor to build a value. The expression Book 9 "Close Calls"
["John Long"] applies the Book constructor to the values 9, "Close Calls", and ["John
Long"] to produce a new value of type BookInfo.

When we pattern match against the Book constructor, we reverse the construction
process. First of all, we check to see if the value was created using that constructor. If
it was, we inspect it to obtain the individual values that we originally supplied to the
constructor when we created the value.

Let's consider what happens if we match the pattern (Book id name authors) against
our example expression.

¢ The match will succeed, because the constructor in the value matches the one in
our pattern.

¢ The variable id will be bound to 9.

¢ The variable name will be bound to "Close Calls".

* The variable authors will be bound to ["John Long"].

Because pattern matching acts as the inverse of construction, it's sometimes referred to
as deconstruction.

Deconstruction doesn't destroy anything

&%
06" If you're steeped in object oriented programming jargon, don't confuse
deconstruction with destruction! Matching a pattern has no effect on
the value we're examining: it just lets us “look inside” it.

Further adventures

The syntax for pattern matching on a tuple is similar to the syntax for constructing a
tuple. Here's a function that returns the last element of a 3-tuple.

-- file: cho3/Tuple.hs
third (a, b, c) = ¢

There's no limit on how “deep” within a value a pattern can look. This definition looks
both inside a tuple and inside a list within that tuple.

-- file: cho3/Tuple.hs
complicated (True, a, x:xs, 5) = (a, xs)

We can try this out interactively.

ghci> :load Tuple.hs

[1 of 1] Compiling Main ( Tuple.hs, interpreted )
Ok, modules loaded: Main.

ghci> complicated (True, 1, [1,2,3], 5)

(1,[2,3])
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Wherever a literal value is present in a pattern (True and 5 in the tuple pattern above),
that value must match exactly for the pattern match to succeed. If every pattern within
a series of equations fails to match, we get a runtime error.

ghci> complicated (False, 1, [1,2,3], 5)
*** Exception: Tuple.hs:10:0-39: Non-exhaustive patterns in function complicated

For an explanation of this error message, skip forward a little, to “Exhaustive patterns
and wild cards.

We can pattern match on an algebraic data type using its value constructors. Recall the
BookInfo type we defined earlier: we can extract the values from a BookInfo as follows.
-- file: cho3/BookStore.hs
bookID (Book id title authors) = id

bookTitle (Book id title authors) = title
bookAuthors (Book id title authors) = authors

Let's see it in action.

ghci> bookID (Book 3 "Probability Theory" ["E.T.H. Jaynes"])

3

ghci> bookTitle (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
"Probability Theory"

ghci> bookAuthors (Book 3 "Probability Theory" ["E.T.H. Jaynes"])
["E.T.H. Jaynes"]

The compiler can infer the types of the accessor functions based on the constructor
we're using in our pattern.

ghci> :type bookID

bookID :: BookInfo -> Int

ghci> :type bookTitle

bookTitle :: BookInfo -> String

ghci> :type bookAuthors
bookAuthors :: BookInfo -> [String]

If we use a literal value in a pattern, the corresponding part of the value we're matching
against must contain an identical value. For instance, the pattern (3:xs) first of all
checks that a value is a non-empty list, by matching against the (:) constructor. It also
ensures that the head of the list has the exact value 3. If both of these conditions hold,
the tail of the list will be bound to the variable xs.

Variable naming in patterns

As you read functions that match on lists, you'll frequently find that the names of the
variables inside a pattern resemble (x:xs) or (d:ds). This is a popular naming conven-

tion. The idea is that the name xs has an “s” on the end of its name as if it's the
“plural” of x, because x contains the head of the list, and xs the remaining elements.
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The wild card pattern

We can indicate that we don't care what is present in part of a pattern. The notation
for this is the underscore character “ ”, which we call a wild card. We use it as follows.

-- file: cho3/BookStore.hs

nicerID (Book id _ B ) = id
nicerTitle (Book _ title _ ) = title
nicerAuthors (Book _ authors) = authors

Here, we have tidier versions of the accessor functions we introduced earlier. Now,
there's no question about which element we're using in each function.

In a pattern, a wild card acts similarly to a variable, but it doesn't bind a new variable.
As the examples above indicate, we can use more than one wild card in a single pattern.

Another advantage of wild cards is that a Haskell compiler can warn us if we introduce
a variable name in a pattern, but do not use it in a function's body. Defining a variable,
but forgetting to use it, can often indicate the presence of a bug, so this is a helpful
feature. If we use a wild card instead of a variable that we do not intend to use, the
compiler won't complain.

Exhaustive patterns and wild cards

When writing a series of patterns, it's important to cover all of a type's constructors.
For example, if we're inspecting a list, we should have one equation that matches the
non-empty constructor (:), and one that matches the empty-list constructor [].

Let's see what happens if we fail to cover all the cases. Here, we deliberately omit a
check for the [] constructor.

-- file: cho3/BadPattern.hs
badExample (x:xs) = x + badExample xs

If we apply this to a value that it cannot match, we'll get an error at runtime: our software
has a bug!

ghci> badExample []
*** Exception: BadPattern.hs:4:0-36: Non-exhaustive patterns in function badExample

In this example, no equation in the function's definition matches the value [].

W N

Warning about incomplete patterns

&
0% GHC provides a helpful compilation option, -fwarn-incomplete-pat
terns, that will cause it to print a warning during compilation if a se-
quence of patterns don't match all of a type's value constructors.
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If we need to provide a default behavior in cases where we don't care about specific
constructors, we can use a wild card pattern.
-- file: cho3/BadPattern.hs

goodExample (x:xs) = x + goodExample xs
goodExample _ =0

The wild card above will match the [] constructor, so applying this function does not
lead to a crash.

ghci> goodExample []

0

ghci> goodExample [1,2]
3

Record syntax

Writing accessor functions for each of a data type's components can be repetitive and
tedious.

-- file: cho3/BookStore.hs

nicerID (Book id _ _ ) = id
nicerTitle (Book _ title _ ) = title
nicerAuthors (Book _ _ authors) = authors

We call this kind of code boilerplate: necessary, but bulky and irksome. Haskell pro-
grammers don't like boilerplate. Fortunately, the language addresses this particular
boilerplate problem: we can define a data type, and accessors for each of its compo-
nents, simultaneously. (The positions of the commas here is a matter of preference. If
you like, put them at the end of a line instead of the beginning.)

-- file: cho3/BookStore.hs

data Customer = Customer {

customerID :: CustomerID
, customerName 11 String

, customerAddress :: Address
} deriving (Show)

This is almost exactly identical in meaning to the following, more familiar form.

-- file: cho3/AltCustomer.hs
data Customer = Customer Int String [String]
deriving (Show)

customerID :: Customer -> Int
customerID (Customer id ) = id

customerName :: Customer -> String
customerName (Customer _ name _) = name

customerAddress :: Customer -> [String]
customerAddress (Customer _ _ address) = address
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For each of the fields that we name in our type definition, Haskell creates an accessor
function of that name.

ghci> :type customerID
customerID :: Customer -> CustomerID

We can still use the usual application syntax to create a value of this type.

-- file: cho3/BookStore.hs

customerl = Customer 271828 "J.R. Hacker"
["255 Syntax Ct",
"Milpitas, CA 95134",
"USA"]

Record syntax adds a more verbose notation for creating a value. This can sometimes
make code more readable.
-- file: cho3/BookStore.hs
customer2 = Customer {
customerID = 271828
, customerAddress = ["1048576 Disk Drive",
"Milpitas, CA 95134",
"UsA"]
, customerName = "Jane Q. Citizen"

}

If we use this form, we can vary the order in which we list fields. Here, we have moved
the name and address fields from their positions in the declaration of the type.

When we define a type using record syntax, it also changes the way the type's values
are printed.

ghci> customer1
Customer {customerID = 271828, customerName = "J.R. Hacker", customerAddress = ["255 Syntax Ct","Milpite

For comparison, let's look at a BookInfo value; we defined this type without record
syntax.

ghci> cities

Book 173 "Use of Weapons" ["Iain M. Banks"]
The accessor functions that we get “for free” when we use record syntax really are
normal Haskell functions.

ghci> :type customerName

customerName :: Customer -> String

ghci> customerName customeri
"J.R. Hacker"

The standard System.Time module makes good use of record syntax. Here's a type de-
fined in that module:

data CalendarTime = CalendarTime {
ctYear i Int,
ctMonth :: Month,
ctDay, ctHour, ctMin, ctSec :: Int,
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ctPicosec :: Integer,

ctWDay :: Day,
ctYDay :: Int,
ctTZName :: String,
ctTz i Int,
ctIsDST :: Bool

In the absence of record syntax, it would be painful to extract specific fields from a type
like this. The notation makes it easier to work with large structures.

Parameterised types

We've repeatedly mentioned that the list type is polymorphic: the elements of a list can
be of any type. We can also add polymorphism to our own types. To do this, we in-
troduce type variables into a type declaration. The Prelude defines a type named
Maybe: we can use this to represent a value that could be either present or missing, e.g.
a field in a database row that could be null.

-- file: cho3/Nullable.hs

data Maybe a = Just a
| Nothing

Here, the variable a is not a regular variable: it's a type variable. It indicates that the
Maybe type takes another type as its parameter. This lets us use Maybe on values of
any type.

-- file: cho3/Nullable.hs
someBool = Just True

someString = Just "something"

As usual, we can experiment with this type in ghci.

ghci> Just 1.5

Just 1.5

ghci> Nothing

Nothing

ghci> :type Just "invisible bike"
Just "invisible bike" :: Maybe [Char]

Maybe is a polymorphic, or generic, type. We give the Maybe type constructor a pa-

rameter to create a specific type, such as Maybe Int or Maybe [Bool]. As we might
expect, these types are distinct.

We can nest uses of parameterised types inside each other, but when we do, we may
need to use parentheses to tell the Haskell compiler how to parse our expression.

-- file: cho3/Nullable.hs
wrapped = Just (Just "wrapped")
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To once again extend an analogy to more familiar languages, parameterised types bear
some resemblance to templates in C++, and to generics in Java. Just be aware that this
is a shallow analogy. Templates and generics were added to their respective languages
long after the languages were initially defined, and have an awkward feel. Haskell's
parameterised types are simpler and easier to use, as the language was designed with
them from the beginning.

Recursive types

The familiar list type is recursive: it's defined in terms of itself. To understand this, let's
create our own list-like type. We'll use Cons in place of the (:) constructor, and Nil in
place of [].

-- file: cho03/ListADT.hs

data List a = Cons a (List a)

| Nil
deriving (Show)

Because List a appears on both the left and the right of the = sign, the type's definition
refers to itself. If we want to use the Cons constructor to create a new value, we must
supply one value of type a, and another of type List a. Let's see where this leads us in
practice.

The simplest value of type List a that we can create is Nil. Save the type definition in a
file, then load it into ghci.

ghci> Nil

Nil
Because Nil has a List type, we can use it as a parameter to Cons.

ghci> Cons 0 Nil
Cons 0 Nil

And because Cons 0 Nil has the type List a, we can use this as a parameter to Cons.

ghci> Cons 1 it

Cons 1 (Cons 0 Nil)

ghci> Cons 2 it

Cons 2 (Cons 1 (Cons 0 Nil))

ghci> Cons 3 it

Cons 3 (Cons 2 (Cons 1 (Cons 0 Nil)))

We could continue in this fashion indefinitely, creating ever longer Cons chains, each
with a single Nil at the end.
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Is List an acceptablelist?

&
0% We can easily prove to ourselves that our List a type has the same shape
as the built-in list type [a]. To do this, we write a function that takes any
value of type [a], and produces a value of type List a.
-- file: cho3/ListADT.hs

fromList (x:xs) = Cons x (fromList xs)
fromList [] Nil

By inspection, this clearly substitutes a Cons for every (:), and a Nil for
each []. This covers both of the built-in list type's constructors. The two
types are isomorphic; they have the same shape.

ghci> fromList “"durian"

Cons 'd" (Cons 'u' (Cons 'r' (Cons 'i' (Cons 'a' (Cons 'n' Nil)))))

ghci> fromList [Just True, Nothing, Just False]

Cons (Just True) (Cons Nothing (Cons (Just False) Nil))

For a third example of what a recursive type is, here is a definition of a binary tree type.

-- file: cho3/Tree.hs
data Tree a = Node a (Tree a) (Tree a)
| Empty
deriving (Show)

A binary tree is either a node with two children, which are themselves binary trees, or
an empty value.

This time, let's search for insight by comparing our definition with one from a more
familiar language. Here's a similar class definition in Java.
class Tree<A>

{

A value;
Tree<A> left;
Tree<A> right;

public Tree(A v, Tree<A> 1, Tree<A> r)

{

value = v;
left = 1;
right = r;

}

The one significant difference is that Java lets us use the special value null anywhere
to indicate “nothing”, so we can use null to indicate that a node is missing a left or
right child. Here's a small function that constructs a tree with two leaves (a leaf, by
convention, has no children).

class Example

static Tree<String> simpleTree()

{
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return new Tree<String>(
"parent",
new Tree<String>("left leaf", null, null),
new Tree<String>("right leaf", null, null));

}

In Haskell, we don't have an equivalent of null. We could use the Maybe type to provide
a similar effect, but that bloats the pattern matching. Instead, we've decided to use a
no-argument Empty constructor. Where the Java example provides null to the Tree
constructor, we supply Empty in Haskell.

-- file: cho3/Tree.hs

simpleTree = Node "parent" (Node "left child" Empty Empty)
(Node "right child" Empty Empty)

Exercises

1. Write the converse of fromList for the List type: a function that takes a List a and
generates a [a].

2. Define a tree type that has only one constructor, like our Java example. Instead
of the Empty constructor, use the Maybe type to refer to a node's children.

Reporting errors

Haskell provides a standard function, error :: String -> a, that we can call when
something has gone terribly wrong in our code. We give it a string parameter, which is
the error message to display. Its type signature looks peculiar: how can it produce a
value of any type a given only a string?

It has a result type of a so that we can call it anywhere and it will always have the right
type. However, it does not return a value like a normal function: instead, it immediately
aborts evaluation, and prints the error message we give it.

The mySecond function returns the second element of its input list, but fails if its input
list isn't long enough.

-- file: cho3/MySecond.hs
mySecond :: [a] -> a

mySecond xs = if null (tail xs)
then error "list too short"
else head (tail xs)

As usual, we can see how this works in practice in ghci.

ghci> mySecond "xi"
Ty
ghci> mySecond [2]

*** Exception: list too short
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ghci> head (mySecond [[9]])
*** Exception: list too short

Notice the third case above, where we try to use the result of the call to mySecond as the
argument to another function. Evaluation still terminates and drops us back to the
ghci prompt. This is the major weakness of using error: it doesn't let our caller distin-
guish between a recoverable error and a problem so severe that it really should terminate
our program.

Aswe have already seen, a pattern matching failure causes a similar unrecoverable error.

ghci> mySecond []
*** Exception: Prelude.tail: empty list

A more controlled approach
We can use the Maybe type to represent the possibility of an error.

If we want to indicate that an operation has failed, we can use the Nothing constructor.
Otherwise, we wrap our value with the Just constructor.

Let's see how our mySecond function changes if we return a Maybe value instead of
calling error.

-- file: cho3/MySecond.hs
safeSecond :: [a] -> Maybe a

safeSecond [] = Nothing
safeSecond xs = if null (tail xs)
then Nothing
else Just (head (tail xs))

If the list we're passed is too short, we return Nothing to our caller. This lets them decide
what to do, where a call to error would force a crash.

ghci> safeSecond []
Nothing

ghci> safeSecond [1]
Nothing

ghci> safeSecond [1,2]
Just 2

ghci> safeSecond [1,2,3]
Just 2

To return to an earlier topic, we can further improve the readability of this function
with pattern matching.

-- file: cho3/MySecond.hs

tidySecond :: [a] -> Maybe a

tidySecond (_:x:_) = Just x
tidySecond _ = Nothing
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The first pattern only matches if the list is at least two elements long (it contains two
list constructors), and it binds the variable x to the list's second element. The second
pattern is matched if the first fails.

Introducing local variables

Within the body of a function, we can introduce new local variables whenever we need
them, using a let expression. Here is a simple function that determines whether we
should lend some money to a customer. We meet a money reserve of at least 100, we
return our new balance after subtracting the amount we have loaned.

-- file: cho3/Lending.hs

lend amount balance = let reserve = 100

newBalance = balance - amount
in if balance < reserve

then Nothing
else Just newBalance

The keywords to look out for here are let, which starts a block of variable declarations,
and in, which ends it. Each line introduces a new variable. The name is on the left of
the =, and the expression to which it is bound is on the right.

Special notes

'\‘;‘ Let us re-emphasise our wording: a name in a let block is bound to an
expression, not to a value. Because Haskell is a lazy language, the ex-
pression associated with a name won't actually be evaluated until it's
needed. In the above example, we will not compute the value of newBa
lance if we do not meet our reserve.

When we define a variable in a let block, we refer to it as a Iet-bound
variable. This simply means what it says: we have bound the variable in
a let block.

Also, our use of white space here is important. We'll talk in more detail
about the layout rules in “The offside rule and white space in an ex-
pression.

We can use the names of a variable in a let block both within the block of declarations
and in the expression that follows the in keyword.

In general, we'll refer to the places within our code where we can use a name as the
name's scope. If we can use a name, it's in scope, otherwise it's out of scope. If a name is
visible throughout a source file, we say it's at the top level.

Shadowing

We can “nest” multiple let blocks inside each other in an expression.
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-- file: cho3/NestedLets.hs
foo = leta=1
in let b = 2
ina+b

It's perfectly legal, but not exactly wise, to repeat a variable name in a nested let ex-
pression.

-- file: cho3/NestedLets.hs
bar = let x = 1
in ((let x = "foo" in x), x)

Here, the inner x is hiding, or shadowing, the outer x. It has the same name, but a
different type and value.

ghci> bar

("foo",1)
We can also shadow a function's parameters, leading to even stranger results. What is
the type of this function?

-- file: cho3/NestedLets.hs
quux a = let a = "foo"
in a ++ "eek!"

Because the function's argument a is never used in the body of the function, due to
being shadowed by the let-bound a, the argument can have any type at all.

ghci> :type quux

quux :: t -> [Char]

N

Compiler warnings are your friends

N
064" Shadowing can obviously lead to confusion and nasty bugs, so GHC
has a helpful -fwarn-name-shadowing option. When enabled, GHC will
print a warning message any time we shadow a name.

The where clause

We can use another mechanism to introduce local variables: the where clause. The
definitions in a where clause apply to the code that precedes it. Here's a similar function
to lend, using where instead of let.
-- file: cho3/Lending.hs
lend2 amount balance = if amount < reserve * 0.5
then Just newBalance
else Nothing

where reserve = 100
newBalance = balance - amount

While a where clause may initially seem weird, it offers a wonderful aid to readability.
It lets us direct our reader's focus to the important details of an expression, with the
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supporting definitions following afterwards. After a while, you may find yourself miss-
ing where clauses in languages that lack them.

As with let expressions, white space is significant in where clauses. We will talk more
about the layout rules shortly, in “The offside rule and white space in an expression.

Local functions, global variables

You'll have noticed that Haskell's syntax for defining a variable looks very similar to its
syntax for defining a function. This symmetry is preserved in let and where blocks: we
can define local functions just as easily as local variables.

-- file: cho3/LocalFunction.hs

pluralise :: String -> [Int] -> [String]

pluralise word counts = map plural counts

where plural 0 = "no " ++ word ++ "s
plural 1 = "one " ++ word
plural n = show n ++ " "

++ word ++ "s

We have defined a local function, plural, that consists of several equations. Local
functions can freely use variables from the scopes that enclose them: here, we use
word from the definition of the outer function pluralise. In the definition of
pluralise, the map function (which we'll be revisiting in the next chapter) applies the
local function plural to every element of the counts list.

We can also define variables, as well as functions, at the top level of a source file.

-- file: cho3/GlobalVariable.hs
itemName = "Weighted Companion Cube"

The offside rule and white space in an expression

In our definitions of 1end and lend2, the left margin of our text wandered around quite
a bit. This was not an accident: in Haskell, white space has meaning.

Haskell uses indentation as a cue to parse sections of code. This use of layout to convey
structure is sometimes called the offside rule. At the beginning of a source file, the first
top level declaration or definition can start in any column, and the Haskell compiler or
interpreter remembers that indentation level. Every subsequent top level declaration
must have the same indentation.

Here's an illustration of the top level indentation rule. Our first file, GoodIndent.hs, is
well behaved.

-- file: cho3/GoodIndent.hs
-- This is the leftmost column.

-- It's fine for top-level declarations to start in any column...
firstGoodIndentation = 1
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-- ...provided all subsequent declarations do, too!
secondGoodIndentation = 2

Our second, BadIndent.hs, doesn't play by the rules.

-- file: cho3/BadIndent.hs
-- This is the leftmost column.

-- Our first declaration is in column 4.
firstBadIndentation = 1

-- Our second is left of the first, which is illegal!
secondBadIndentation = 2

Here's what happens when we try to load the two files into ghci.

ghci> :load GoodIndent.hs

[1 of 1] Compiling Main ( GoodIndent.hs, interpreted )
Ok, modules loaded: Main.

ghci> :load BadIndent.hs

[1 of 1] Compiling Main ( BadIndent.hs, interpreted )

BadIndent.hs:8:2: parse error on input "secondBadIndentation’
Failed, modules loaded: none.

An empty following line is treated as a continuation of the current item, as is a following
line indented further to the right.

The rules for let expressions and where clauses are similar. After a let orwhere keyword,
the Haskell compiler or interpreter remembers the indentation of the next token it sees.
If the line that follows is empty, or its indentation is further to the right, it is considered
to continue the previous line. If the indentation is the same as the start of the preceding
item, this is treated as beginning a new item in the same block.

-- file: cho3/Indentation.hs

foo = let firstDefinition = blah blah

-- a comment-only line is treated as empty
continuation blah

-- we reduce the indentation, so this is a new definition
secondDefinition = yada yada

continuation yada
in whatever

Here are nested uses of let and where.

-- file: cho3/letwhere.hs
bar = let b = 2
c = True
inleta=>
in (a, c)

The name a is only visible within the inner let expression. It's not visible in the outer
let. If we try to use the name a there, we'll get a compilation error. The indentation
gives both us and the compiler a visual cue as to what is currently in scope.
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-- file: cho3/letwhere.hs
foo = x
where x =y
where y = 2

Similarly, the scope of the first where clause is the definition of foo, but the scope of the
second is just the first where clause.

The indentation we use for the let and where clauses makes our intentions easy to figure
out.

A note about tabs versus spaces

If you use a Haskell-aware text editor (e.g. Emacs), it is probably already configured to
use space characters for all white space when you edit Haskell source files. If your editor
is not Haskell-aware, you should configure it to only use space characters.

The reason for this is portability. In an editor that uses a fixed-width font, tab stops are
by convention placed at different intervals on Unix-like systems (every eight characters)
than on Windows (every four characters). This means that no matter what your per-
sonal beliefs are about where tabs belong, you can't rely on someone else's editor hon-
ouring your preferences. Any indentation that uses tabs is going to look broken under
someone's configuration. In fact, this could lead to compilation problems, as the Haskell
language standard requires implementations to use the Unix tab width convention.
Using space characters avoids this problem entirely.

The offside rule is not mandatory

We can use explicit structuring instead of layout to indicate what we mean. To do so,
we start a block of equations with an opening curly brace; separate each item with a
semicolon; and finish the block with a closing curly brace. The following two uses of
let have the same meanings.

-- file: cho3/Braces.hs

bar = let a =1
b =2
c=3
ina+b+c
foo=1let {a=1; b=2;
c=31}

ina+b+c

When we use explicit structuring, the normal layout rules don't apply, which is why
we can get away with unusual indentation in the second let expression.

We can use explicit structuring anywhere that we'd normally use layout. It's valid for
where clauses, and even top-level declarations. Just remember that although the facility
exists, explicit structuring is hardly ever actually used in Haskell programs.
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The case expression

Function definitions are not the only place where we can use pattern matching. The
case construct lets us match patterns within an expression. Here's what it looks like.
This function (defined for us in Data.Maybe) unwraps a Maybe value, using a default if
the value is Nothing.
-- file: cho03/Guard.hs
fromMaybe defval wrapped =
case wrapped of

Nothing -> defval
Just value -> value

The case keyword is followed by an arbitrary expression: the pattern match is per-
formed against the result of this expression. The of keyword signifies the end of the
expression and the beginning of the block of patterns and expressions.

Each item in the block consists of a pattern, followed by an arrow ->, followed by an
expression to evaluate if that pattern matches. These expressions must all have the same
type. The result of the case expression is the result of the expression associated with
the first pattern to match. Matches are attempted from top to bottom.

To express “here's the expression to evaluate if none of the other patterns match”, we
just use the wild card pattern _as the last in our list of patterns. If a pattern match fails,
we will get the same kind of runtime error as we saw earlier.

Common beginner mistakes with patterns

There are a few ways in which new Haskell programmers can misunderstand or misuse
patterns. Here are some attempts at pattern matching gone awry. Depending on what
you expect one of these examples to do, it might contain a surprise.

Incorrectly matching against a variable

-- file: cho3/BogusPattern.hs
data Fruit = Apple | Orange

apple = "apple"
orange = "orange"
whichFruit :: String -> Fruit
whichFruit f = case f of
apple -> Apple
orange -> Orange

A naive glance suggests that this code is trying to check the value f to see whether it
matches the value apple or orange.
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It is easier to spot the mistake if we rewrite the code in an equational style.

-- file: cho3/BogusPattern.hs
equational apple = Apple
equational orange = Orange

Now can you see the problem? Here, it is more obvious apple does not refer to the top
level value named apple: it is a local pattern variable.

Irrefutable patterns

&8
065" We refer to a pattern that always succeeds as irrefutable. Plain variable
names and the wild card _ are examples of irrefutable patterns.

Here's a corrected version of this function.

-- file: cho3/BogusPattern.hs
betterFruit f = case f of
"apple" -> Apple
"orange" -> Orange

We fixed the problem by matching against the literal values "apple" and "orange".

Incorrectly trying to compare for equality

What if we want to compare the values stored in two nodes of type Tree, and return
one of them if they're equal? Here's an attempt.
-- file: cho3/BadTree.hs

bad_nodesAreSame (Node a _ ) (Node a _ _)
bad_nodesAreSame _

Just a
Nothing

A name can only appear once in a set of pattern bindings. We cannot place a variable
in multiple positions to express the notion “this value and that should be identical”.
Instead, we'll solve this problem using guards, another invaluable Haskell feature.

Conditional evaluation with guards

Pattern matching limites us to performing fixed tests of a value's shape. Although this
is useful, we will often want to make a more expressive check before evaluating a func-
tion's body. Haskell provides a feature, guards, that give us this ability. We'll introduce
the idea with a modification of the function we wrote to compare two nodes of a tree.

-- file: cho3/BadTree.hs

nodesAreSame (Node a _ ) (Node b _ )

| a == = Just a
nodesAreSame _ = Nothing

In this example, we use pattern matching to ensure that we are looking at values of the
right shape, and a guard to compare pieces of them.

68 | Chapter3: Defining Types, Streamlining Functions



A pattern can be followed by zero or more guards, each an expression of type Bool. A
guard is introduced by a | symbol. This is followed by the guard expression, then an
=symbol (or -> if we're in a case expression), then the body to use if the guard expression
evaluates to True. If a pattern matches, each guard associated with that pattern is eval-
uated, in the order in which they are written. If a guard succeeds, the body affiliated
with it is used as the result of the function. If no guard succeeds, pattern matching
moves on to the next pattern.

When a guard expression is evaluated, all of the variables mentioned in the pattern
with which it is associated are bound and can be used.

Here is a reworked version of our lend function that uses guards.

-- file: cho3/Lending.hs
lend3 amount balance
| amount <= 0
| amount > reserve * 0.5
| otherwise
where reserve = 100
newBalance = balance - amount

Nothing
Nothing
Just newBalance

The special-looking guard expression otherwise is simply a variable bound to the value
True, to aid readability.

We can use guards anywhere that we can use patterns. Writing a function as a series
of equations using pattern matching and guards can make it much clearer. Remember
the myDrop function we defined in “Conditional evaluation?
-- file: cho2/myDrop.hs
myDrop n xs = if n <= 0 || null xs
then xs
else myDrop (n - 1) (tail xs)

Here is a reformulation that uses patterns and guards.

-- file: cho2/myDrop.hs

niceDrop n xs | n <= 0 = xs

niceDrop _ [] =[]

niceDrop n (_:xs) = niceDrop (n - 1) xs
This change in style lets us enumerate up front the cases in which we expect a function
to behave differently. If we bury the decisions inside a function as if expressions, the
code becomes harder to read.

Exercises

1. Write a function that computes the number of elements in a list. To test it, ensure
that it gives the same answers as the standard length function.

2. Add a type signature for your function to your source file. To test it, load the
source file into ghci again.
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3. Write a function that computes the mean of a list, i.e. the sum of all elements in
the list divided by its length. (You may need to use the fromIntegral function to
convert the length of the list from an integer into a floating point number.)

4. Turn a list into a palindrome, i.e. it should read the same both backwards and
forwards. For example, given the list [1,2,3], your function should return
[1,2,3,3,2,1].

Write a function that determines whether its input list is a palindrome.

Create a function that sorts a list of lists based on the length of each sublist. (You
may want to look at the sortBy function from the Data.List module.)

7. Define a function that joins a list of lists together using a separator value.

-- file: cho3/Intersperse.hs
intersperse :: a -> [[a]] -> [a]

The separator should appear between elements of the list, but should not follow
the last element. Your function should behave as follows.

ghci> :load Intersperse

[1 of 1] Compiling Main ( Intersperse.hs, interpreted )
Ok, modules loaded: Main.

ghci> intersperse ',' []

nn

ghci> intersperse ',' ["foo"]

" fo0"
ghci> intersperse ',' ["foo","bar","baz","quux"]
"foo,bar,baz,quux"

8. Using the binary tree type that we defined earlier in this chapter, write a function

that will determine the height of the tree. The height is the largest number of

hops from the root to an Empty. For example, the tree Empty has height zero; Node

"x" Empty Empty has height one; Node "x" Empty (Node "y" Empty Empty) has
height two; and so on.

9. Consider three two-dimensional points a, b, and c. If we look at the angle formed
by the line segment from a to b and the line segment from b to ¢, it either turns
left, turns right, or forms a straight line. Define a Direction data type that lets you
represent these possibilities.

10.  Write a function that calculates the turn made by three 2D points and returns a
Direction.

11.  Define a function that takes a list of 2D points and computes the direction of
each successive triple. Given a list of points [a,b, c,d,e], it should begin by com-
puting the turn made by [a,b,c], then the turn made by [b,c,d], then [c,d,e].
Your function should return a list of Direction.

12.  Using the code from the preceding three exercises, implement Graham's scan
algorithm for the convex hull of a set of 2D points. You can find good description
of what a convex hull (http://en.wikipedia.org/wiki/Convex_hull). is, and how the
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Graham scan algorithm (http://en.wikipedia.org/wiki/Graham_scan) should
work, on Wikipedia (http://en.wikipedia.org/).
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CHAPTER 4
Functional programming

Thinking in Haskell

Our early learning of Haskell has two distinct aspects. The first is coming to terms with
the shift in mindset from imperative programming to functional: we have to replace
our programming habits from other languages. We do this not because imperative
techniques are bad, but because in a functional language other techniques work better.

Our second challenge is learning our way around the standard Haskell libraries. As in
any language, the libraries act as a lever, enabling us to multiply our problem solving
power. Haskell libraries tend to operate at a higher level of abstraction than those in
many other languages. We'll need to work a little harder to learn to use the libraries,
but in exchange they offer a lot of power.

In this chapter, we'll introduce a number of common functional programming techni-
ques. We'll draw upon examples from imperative languages to highlight the shift in
thinking that we'll need to make. As we do so, we'll walk through some of the funda-
mentals of Haskell's standard libraries. We'll also intermittently cover a few more lan-
guage features along the way.

A simple command line framework

In most of this chapter, we will concern ourselves with code that has no interaction
with the outside world. To maintain our focus on practical code, we will begin by
developing a gateway between our “pure” code and the outside world. Our framework
simply reads the contents of one file, applies a function to the file, and writes the result
to another file.

-- file: cho4/InteractWith.hs
-- Save this in a source file, e.g. Interact.hs

import System.Environment (getArgs)

interactWith function inputFile outputFile = do
input <- readFile inputFile
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writeFile outputFile (function input)

main = mainWith myFunction
where mainWith function = do
args <- getArgs
case args of
[input,output] -> interactWith function input output
_ -> putStrLn "error: exactly two arguments needed"

-- replace "id" with the name of our function below
myFunction = id

This is all we need to write simple, but complete, file processing programs. This is a
complete program. We can compile it to an executable named InteractWith as follows.
$ ghc --make InteractWith

[1 of 1] Compiling Main ( InteractWith.hs, InteractWith.o )
Linking InteractWith ...

If we run this program from the shell or command prompt, it will accept two file names:
the name of a file to read, and the name of a file to write.

$ ./Interact

error: exactly two arguments needed

$ ./Interact hello-in.txt hello-out.txt

$ cat hello-in.txt

hello world

$ cat hello-out.txt

hello world

Some of the notation in our source file is new. The do keyword introduces a block of
actions that can cause effects in the real world, such as reading or writing a file. The
<- operator is the equivalent of assignment inside a do block. This is enough explanation
to get us started. We will talk in much more detail about these details of notation, and
/O in general, in Chapter 7.

When we want to test a function that cannot talk to the outside world, we simply replace
the name id in the code above with the name of the function we want to test. Whatever
our function does, it will need to have the type String -> String: in other words, it must
accept a string, and return a string.

Warming up: portably splitting lines of text

Haskell provides a built-in function, lines, that lets us split a text string on line boun-
daries. It returns a list of strings with line termination characters omitted.

ghci> :type lines

lines :: String -> [String]
ghci> lines "line 1\nline 2"
["line 1","line 2"]

ghci> lines "foo\n\nbar\n"
["foo","","bar"]
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While 1lines looks useful, it relies on us reading a file in “text mode” in order to work.
Text mode is a feature common to many programming languages: it provides a special
behavior when we read and write files on Windows. When we read a file in text mode,
the file I/O library translates the line ending sequence "\r\n" (carriage return followed
by newline) to "\n" (newline alone), and it does the reverse when we write a file. On
Unix-like systems, text mode does not perform any translation. As a result of this dif-
ference, if we read a file on one platform that was written on the other, the line endings
are likely to become a mess. (Both readFile and writeFile operate in text mode.)

ghci> lines "a\r\nb"

["a\r","b"]
The lines function only splits on newline characters, leaving carriage returns dangling
at the ends of lines. If we read a Windows-generated text file on a Linux or Unix box,
we'll get trailing carriage returns at the end of each line.

We have comfortably used Python's “universal newline” support for years: this trans-
parently handles Unix and Windows line ending conventions for us. We would like to
provide something similar in Haskell.

Since we are still early in our career of reading Haskell code, we will discuss our Haskell
implementation in quite some detail.

-- file: cho4/Splitlines.hs

splitlines :: String -> [String]
Our function's type signature indicates that it accepts a single string, the contents of a
file with some unknown line ending convention. It returns a list of strings, representing
each line from the file.

-- file: cho4/SplitLines.hs

splitlines [] = []

splitlLines cs =

let (pre, suf) = break islLineTerminator cs

in pre : case suf of
("\r':'\n':rest) -> splitlines rest

("\r':rest) -> splitlines rest

("\n':rest) -> splitlines rest

) >
islLineTerminator ¢ = ¢ == '\r' || ¢ == "\n'

Before we dive into detail, notice first how we have organized our code. We have pre-
sented the important pieces of code first, keeping the definition of isLineTerminator
until later. Because we have given the helper function a readable name, we can guess
what it does even before we've read it, which eases the smooth “flow” of reading the
code.

The Prelude defines a function named break that we can use to partition a list into two
parts. It takes a function as its first parameter. That function must examine an element
of the list, and return a Bool to indicate whether to break the list at that point. The
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break function returns a pair, which consists of the sublist consumed before the pred-
icate returned True (the prefix), and the rest of the list (the suffix).

ghci> break odd [2,4,5,6,8]
([2,4],[5,6,8])

ghci> :module +Data.Char
ghci> break isUpper "isUpper"

("is", "Upper”)

Since we only need to match a single carriage return or newline at a time, examining
one element of the list at a time is good enough for our needs.

The first equation of splitlLines indicates that if we match an empty string, we have
no further work to do.

In the second equation, we first apply break to our input string. The prefix is the sub-
string before a line terminator, and the suffix is the remainder of the string. The suffix
will include the line terminator, if any is present.

The “pre :” expression tells us that we should add the pre value to the front of the list
of lines. We then use a case expression to inspect the suffix, so we can decide what to
do next. The result of the case expression will be used as the second argument to the
(:) list constructor.

The first pattern matches a string that begins with a carriage return, followed by a
newline. The variable rest is bound to the remainder of the string. The other patterns
are similar, so they ought to be easy to follow.

A prose description of a Haskell function isn't necessarily easy to follow. We can gain
a better understanding by stepping into ghci, and oberving the behavior of the function
in different circumstances.
Let's start by partitioning a string that doesn't contain any line terminators.

ghci> splitlLines "foo"

["fo0" ]
Here, our application of break never finds a line terminator, so the suffix it returns is
empty.

ghci> break isLineTerminator "foo"
("_Fooll, llll)

The case expression in splitlLines must thus be matching on the fourth branch, and
we're finished. What about a slightly more interesting case?

ghci> splitlines "foo\r\nbar"

["fooll,llbarll]
Our first application of break gives us a non-empty suffix.

ghci> break isLineTerminator "foo\r\nbar"
("foo","\r\nbar")
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Because the suffix begins with a carriage return, followed by a newline, we match on
the first branch of the case expression. This gives us pre bound to "foo", and suf bound
to "bar". We apply splitLines recursively, this time on "bar" alone.

ghci> splitlLines "bar"
["bar"]

The result is that we construct a list whose head is "foo" and whose tail is [ "bar"].
ghci> "foo" : ["bar"]
["foo", "bar"]
This sort of experimenting with ghci is a helpful way to understand and debug the
behavior of a piece of code. It has an even more important benefit that is almost acci-
dental in nature. It can be tricky to test complicated code from ghci, so we will tend to
write smaller functions. This can further help the readability of our code.

This style of creating and reusing small, powerful pieces of code is a fundamental part
of functional programming.

Aline ending conversion program

Let's hook our splitlLines function into the little framework we wrote earlier. Make a
copy of the Interact.hs source file; let's call the new file FixLines.hs. Add the
splitlLines function to the new source file. Since our function must produce a single
String, we must stitch the list of lines back together. The Prelude provides an unlines
function that concatenates a list of strings, adding a newline to the end of each.

-- file: cho4/Splitlines.hs

fixLines :: String -> String

fixLines input = unlines (splitLines input)
If we replace the id function with fixLines, we can compile an executable that will
convert a text file to our system's native line ending.

$ ghc --make FixLines

[1 of 1] Compiling Main ( FixLines.hs, FixLines.o )
Linking FixLines ...

If you are on a Windows system, find and download a text file that was created on a
Unix system (for example gpl-3.0.txt (http://www.gnu.org/licenses/gpl-3.0.txt)). Open
it in the standard Notepad text editor. The lines should all run together, making the

file almost unreadable. Process the file using the FixLines command you just created,
and open the output file in Notepad. The line endings should now be fixed up.

On Unix-like systems, the standard pagers and editors hide Windows line endings.
This makes it more difficult to verify that FixLines is actually eliminating them. Here
are a few commands that should help.

$ file gpl-3.0.txt

gpl-3.0.txt: ASCII English text

$ unix2dos gpl-3.0.txt
unix2dos: converting file gpl-3.0.txt to DOS format ...
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$ file gpl-3.0.txt
gpl-3.0.txt: ASCII English text, with CRLF line terminators

Infix functions

Usually, when we define or apply a function in Haskell, we write the name of the
function, followed by its arguments. This notation is referred to as prefix, because the
name of the function comes before its arguments.

If a function or constructor takes two or more arguments, we have the option of using
it in infix form, where we place it between its first and second arguments. This allows
us to use functions as infix operators.

To define or apply a function or value constructor using infix notation, we enclose its
name in backtick characters (sometimes known as backquotes). Here are simple infix
definitions of a function and a type.

-- file: cho4/Plus.hs
a plusb=a+b

data a "Pair’ b = a "Pair’ b
deriving (Show)

-- we can use the constructor either prefix or infix
foo = Pair 1 2
bar = True “Pair® "quux"

Since infix notation is purely a syntactic convenience, it does not change a function's
behavior.

ghci> 1 “plus® 2

3

ghci> plus 1 2

3

ghci> True “Pair® "something"

True “Pair® "something"

ghci> Pair True "something"

True “Pair® "something"

Infix notation can often help readability. For instance, the Prelude defines a function,
elem, that indicates whether a value is present in a list. If we use elem using prefix
notation, it is fairly easy to read.

ghci> elem 'a' "camogie"
True

If we switch to infix notation, the code becomes even easier to understand. It is now
clearer that we're checking to see if the value on the left is present in the list on the right.

ghci> 3 “elem” [1,2,4,8]
False
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We see a more pronounced improvement with some useful functions from the
Data.List module. The isPrefix0f function tells us if one list matches the beginning
of another.

ghci> :module +Data.list

ghci> "foo" “isPrefixOf" "foobar"
True

The isInfix0f and isSuffix0f functions match anywhere in a list and at its end, re-
spectively.

ghci> "needle" “isInfixOf" "haystack full of needle thingies"

True

ghci> "end" “isSuffixOf" "the end"
True

There is no hard-and-fast rule that dictates when you ought to use infix versus prefix
notation, although prefix notation is far more common. It's best to choose whichever
makes your code more readable in a specific situation.

W8

Beware familiar notation in an unfamiliar language

% A few other programming languages use backticks, but in spite of the
visual similarities, the purpose of backticks in Haskell does not remotely
resemble their meaning in, for example, Perl, Python, or Unix shell
scripts.

The only legal thing we can do with backticks in Haskell is wrap them
around the name of a function. We can't, for example, use them to en-
close a complex expression whose value is a function. It might be con-
venient if we could, but that's not how the language is today.

Working with lists

As the bread and butter of functional programming, lists deserve some serious atten-
tion. The standard prelude defines dozens of functions for dealing with lists. Many of
these will be indispensable tools, so it's important that we learn them early on.

For better or worse, this section is going to read a bit like a “laundry list” of functions.
Why present so many functions at once? These functions are both easy to learn and
absolutely ubiquitous. If we don't have this toolbox at our fingertips, we'll end up
wasting time by reinventing simple functions that are already present in the standard
libraries. So bear with us as we go through the list; the effort you'll save will be huge.

The Data.List module is the “real” logical home of all standard list functions. The
Prelude merely re-exports a large subset of the functions exported by Data.List. Several
useful functions in Data.List are not re-exported by the standard prelude. As we walk
through list functions in the sections that follow, we will explicitly mention those that
are only in Data.List.
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ghci> :module +Data.list

Because none of these functions is complex or takes more than about three lines of
Haskell to write, we'll be brief in our descriptions of each. In fact, a quick and useful
learning exercise is to write a definition of each function after you've read about it.

Basic list manipulation

The length function tells us how many elements are in a list.

ghci> :type length
length :: [a] -> Int
ghci> length []

0

ghci> length [1,2,3]
3

ghci> length "strings are lists, too"
22

If you need to determine whether a list is empty, use the null function.

ghci> :type null
null :: [a] -> Bool
ghci> null []

True

ghci> null "plugh"
False

To access the first element of a list, we use the head function.

ghci> :type head
head :: [a] -> a
ghci> head [1,2,3]
1

The converse, tail, returns all but the head of a list.

ghci> :type tail
tail :: [a] -> [a]
ghci> tail "foo"
"o0"

Another function, last, returns the very last element of a list.

ghci> :type last
last :: [a] -> a
ghci> last "bar"

r

The converse of last is init, which returns a list of all but the last element of its input.

ghci> :type init
init :: [a] -> [a&]
ghci> init "bar"
"ha"
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Several of the functions above behave poorly on empty lists, so be careful if you don't
know whether or not a list is empty. What form does their misbehavior take?

ghci> head []
*** Exception: Prelude.head: empty list

Try each of the above functions in ghci. Which ones crash when given an empty list?

Safely and sanely working with crashy functions

When we want to use a function like head, where we know that it might blow up on us
if we pass in an empty list, the temptation might initially be strong to check the length
of the list before we call head. Let's construct an artificial example to illustrate our point.
-- file: chog/Efficientlist.hs
myDumbExample xs = if length xs > 0
then head xs
else 'Z'
If we're coming from a language like Perl or Python, this might seem like a perfectly
natural way to write this test. Behind the scenes, Python lists are arrays; and Perl arrays
are, well, arrays. So they necessarily know how long they are, and calling len(foo) or
scalar(@foo) is a perfectly natural thing to do. But as with many other things, it's not
a good idea to blindly transplant such an assumption into Haskell.

We've already seen the definition of the list algebraic data type many times, and know
that a list doesn't store its own length explicitly. Thus, the only way that length can
operate is to walk the entire list.

Therefore, when we only care whether or not a list is empty, calling length isn't a good
strategy. It can potentially do a lot more work than we want, if the list we're working
with is finite. Since Haskell lets us easily create infinite lists, a careless use of length
may even result in an infinite loop.

A more appropriate function to call here instead is null, which runs in constant time.
Better yet, using null makes our code indicate what property of the list we really care
about. Here are two improved ways of expressing myDumbExample.

-- file: cho4/Efficientlist.hs

mySmartExample xs = if not (null xs)

then head xs
else 'Z'

myOtherExample (x:_) = x
myOtherExample [] = 'Z'

Partial and total functions

Functions that only have return values defined for a subset of valid inputs are called
partial functions (calling error doesn't qualify as returning a value!). We call functions
that return valid results over their entire input domains total functions.
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It'salways a good idea to know whether a function you're using is partial or total. Calling
a partial function with an input that it can't handle is probably the single biggest source
of straightforward, avoidable bugs in Haskell programs.

Some Haskell programmers go so far as to give partial functions names that begin with
a prefix such as unsafe, so that they can't shoot themselves in the foot accidentally.

It's arguably a deficiency of the standard prelude that it defines quite a few “unsafe”
partial functions, like head, without also providing “safe” total equivalents.

More simple list manipulations

Haskell's name for the “append” function is (++).

ghci> :type (++)

(++) :: [a] -> [a] -> [a]
ghci> "foo" ++ "bar"
"foobar"

ghci> [] ++ [1,2,3]
[1,2,3]

ghci> [True] ++ []

[True]

The concat function takes a list of lists, all of the same type, and concatenates them
into a single list.

ghci> :type concat

concat :: [[a]] -> [a]

ghci> concat [[1,2,3], [4,5,6]]
[1,2,3,4,5,6]

It removes one level of nesting.

ghci> concat [[[1,2],[3]], [[4],[5],[6]]1]
[[1,2],[3],[4],[5],[6]]

ghci> concat (concat [[[1,2],[3]], [[4],[5],[611])
[1,2,3,4,5,6]

The reverse function returns the elements of a list in reverse order.

ghci> :type reverse

reverse :: [a] -> [a&]
ghci> reverse "foo"
" oof"

For lists of Bool, the and and or functions generalise their two-argument cousins, (8&)
and (]]), over lists.

ghci> :type and

and :: [Bool] -> Bool
ghci> and [True,False,True]
False

ghci> and []

True

ghci> :type or

or :: [Bool] -> Bool
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ghci> or [False,False,False,True,False]
True

ghci> or []

False

They have more useful cousins, all and any, which operate on lists of any type. Each
one takes a predicate as its first argument; all returns True if that predicate succeeds
on every element of the list, while any returns True if the predicate succeeds on at least
one element of the list.

ghci> :type all

all :: (a -> Bool) -> [a] -> Bool
ghci> all odd [1,3,5]

True

ghci> all odd [3,1,4,1,5,9,2,6,5]
False

ghci> all odd []

True

ghci> :type any

any :: (a -> Bool) -> [a] -> Bool
ghci> any even [3,1,4,1,5,9,2,6,5]
True

ghci> any even []

False

Working with sublists

The take function, which we already met in “Function application, returns a sublist
consisting of the first k elements from a list. Its converse, drop, drops k elements from
the start of the list.

ghci> :type take

take :: Int -> [a] -> [a]
ghci> take 3 "foobar"
"foo"

ghci> take 2 [1]

(1]

ghci> :type drop

drop :: Int -> [a] -> [a]
ghci> drop 3 "xyzzy"

"zy"

ghci> drop 1 []

(]

The splitAt function combines the functions of take and drop, returning a pair of the
input list, split at the given index.

ghci> :type splitAt

splitAt :: Int -> [a] -> ([a], [a])

ghci> splitAt 3 "foobar"

("fooll , Ilbarll)
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The takeWhile and dropWhile functions take predicates: takeWhile takes elements from
the beginning of a list as long as the predicate returns True, while dropWhile drops
elements from the list as long as the predicate returns True.

ghci> :type takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]
ghci> takeWhile odd [31,3,5,6,8,9,11]
[1,3,5]

ghci> :type dropWhile

dropWhile :: (a -> Bool) -> [a] -> [a]
ghci> dropWhile even [2,4,6,7,9,10,12]
[7,9,10,12]

Just as splitAt “tuples up” the results of take and drop, the functions break (which we
already saw in “Warming up: portably splitting lines of text) and span tuple up the
results of takeWhile and dropWhile.

Each function takes a predicate; break consumes its input while its predicate fails, while
span consumes while its predicate succeeds.

ghci> :type span

span :: (a -> Bool) -> [a] -> ([a], [a])
ghci> span even [2,4,6,7,9,10,11]
([2,4,6],[7,9,10,11])

ghci> :type break

break :: (a -> Bool) -> [a] -> ([a], [a])
ghci> break even [1,3,5,6,8,9,10]
([1,3,51,[6,8,9,10])

Searching lists

As we've already seen, the elem function indicates whether a value is present in a list.
It has a companion function, notElem.

ghci> :type elem

elem :: (Eq a) => a -> [a] -> Bool

ghci> 2 “elem’ [5,3,2,1,1]

True

ghci> 2 “notElem’ [5,3,2,1,1]

False

For a more general search, filter takes a predicate, and returns every element of the
list on which the predicate succeeds.

ghci> :type filter

filter :: (a -> Bool) -> [a] -> [a]

ghci> filter odd [2,4,1,3,6,8,5,7]

[1,3,5,7]

In Data.list, three predicates, isPrefix0f, isInfix0f, and isSuffix0f, let us test for
the presence of sublists within a bigger list. The easiest way to use them is using infix
notation.
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The isPrefix0f function tells us whether its left argument matches the beginning of its
right argument.

ghci> :module +Data.list

ghci> :type isPrefix0f

isPrefix0f :: (Eq a) => [a] -> [a] -> Bool
ghci> "foo" “isPrefixOf" "foobar"

True

ghci> [1,2] “isPrefix0f' []

False

The isInfix0f function indicates whether its left argument is a sublist of its right.

ghci> :module +Data.list

ghci> [2,6] “isInfixof® [3,1,4,1,5,9,2,6,5,3,5,8,9,7,9]
True

ghci> "funk" “isInfix0f" "sonic youth"

False

The operation of 1sSuffix0f shouldn't need any explanation.

ghci> :module +Data.List

ghci> ".c" “isSuffix0f" "crashme.c"
True

Working with several lists at once

The zip function takes two lists and “zips” them into a single list of pairs. The resulting
list is the same length as the shorter of the two inputs.

ghci> :type zip

zip :: [a] -> [b] -> [(a, b)]

ghci> zip [12,72,93] "zippity"

[(12,'2"),(72,'1"),(93,"'p")]
More useful is zipWith, which takes two lists and applies a function to each pair of
elements, generating a list that is the same length as the shorter of the two.

ghci> :type zipWith

zipWith :: (@ -> b -> ¢) -> [a] -> [b] -> [c]

ghci> zipWith (+) [1,2,3] [4,5,6]

[5,7,9]
Haskell's type system makes it an interesting challenge to write functions that take
variable numbers of arguments’. So if we want to zip three lists together, we call zip3
or zipWith3, and so on up to zip7 and zipWith7.

" Unfortunately, we do not have room to address that challenge in this book.
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Special string-handling functions

We've already encountered the standard lines function in “Warming up: portably
splitting lines of text, and its standard counterpart, unlines. Notice that unlines always
places a newline on the end of its result.

ghci> lines "foo\nbar"

["foo", "bar" ]

ghci> unlines ["foo", "bar"]

"foo\nbar\n"

The words function splits an input string on any white space. Its counterpart, unwords,
uses a single space to join a list of words.

ghci> words "the \r quick \t brown\n\n\nfox"

[ llthell , llquickll , Ilbrownll’ "fOX" ]

ghci> unwords ["jumps", "over", "the", "lazy", "dog"]

"jumps over the lazy dog"

Exercises

1. Write your own “safe” definitions of the standard partial list functions, but make
sure that yours never fail. As a hint, you might want to consider using the fol-
lowing types.

-- file: cho4/cho4.exercises.hs
safeHead :: [a] -> Maybe a
safeTail :: [a] -> Maybe [a]
safelast :: [a] -> Maybe a
safelnit :: [a] -> Maybe [a]

2. Write a function splitWith that acts similarly to words, but takes a predicate and
a list of any type, and splits its input list on every element for which the predicate
returns False.

-- file: cho4/cho4.exercises.hs
splitWith :: (a -> Bool) -> [a] -> [[a]]

3. Using the command framework from “A simple command line framework, write
a program that prints the first word of each line of its input.

4. Write a program that transposes the text in a file. For instance, it should convert
"hello\nworld\n" to "hw\neo\nlr\nll\nod\n".

How to think about loops

Unlike traditional languages, Haskell has neither a for loop nor a while loop. If we've
got a lot of data to process, what do we use instead? There are several possible answers
to this question.

86 | Chapter4: Functional programming



Explicit recursion

A straightforward way to make the jump from a language that has loops to one that
doesn'tis to run through a few examples, looking at the differences. Here's a C function
that takes a string of decimal digits and turns them into an integer.

int as_int(char *str)

{
int acc; /* accumulate the partial result */
for (acc = 0; isdigit(*str); str++) {
acc = acc * 10 + (*str - '0');
}
return acc;
}

Given that Haskell doesn't have any looping constructs, how should we think about
representing a fairly straightforward piece of code like this?

We don't have to start off by writing a type signature, but it helps to remind us of what
we're working with.

-- file: cho4/IntParse.hs
import Data.Char (digitToInt) -- we'll need ord shortly

asInt :: String -> Int

The C code computes the result incrementally as it traverses the string; the Haskell
code can do the same. However, in Haskell, we can express the equivalent of a loop as
a function. We'll call ours loop just to keep things nice and explicit.

-- file: cho4/IntParse.hs
loop :: Int -> String -> Int

asInt xs = loop 0 xs

That first parameter to loop is the accumulator variable we'll be using. Passing zero into
it is equivalent to initialising the acc variable in C at the beginning of the loop.

Rather than leap into blazing code, let's think about the data we have to work with.
Our familiar String is just a synonym for [Char], a list of characters. The easiest way
for us to get the traversal right is to think about the structure of a list: it's either empty,
or a single element followed by the rest of the list.

We can express this structural thinking directly by pattern matching on the list type's
constructors. It's often handy to think about the easy cases first: here, that means we
will consider the empty-list case.

-- file: cho4/IntParse.hs
loop acc [] = acc

An empty list doesn't just mean “the input string is empty”; it's also the case we'll
encounter when we traverse all the way to the end of a non-empty list. So we don't want
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to “error out” if we see an empty list. Instead, we should do something sensible. Here,
the sensible thing is to terminate the loop, and return our accumulated value.

The other case we have to consider arises when the input list is not empty. We need to
do something with the current element of the list, and something with the rest of the list.
-- file: cho4/IntParse.hs

loop acc (x:xs) = let acc' = acc * 10 + digitToInt x
in loop acc' xs

We compute a new value for the accumulator, and give it the name acc'. We then call
the loop function again, passing it the updated value acc' and the rest of the input list;
this is equivalent to the loop starting another round in C.

Single quotes in variable names

[ \“?:' Remember, a single quote is a legal character to use in a Haskell variable
name, and is pronounced “prime”. There's a common idiom in Haskell
programs involving a variable, say foo, and another variable, say foo'.
We can usually assume that foo' is somehow related to foo. It's often a
new value for foo, as in our code above.

Sometimes we'll see this idiom extended, such as foo''. Since keeping
track of the number of single quotes tacked onto the end of a name
rapidly becomes tedious, use of more than two in a row is thankfully
rare. Indeed, even one single quote can be easy to miss, which can lead
to confusion on the part of readers. It might be better to think of the use
of single quotes as a coding convention that you should be able to rec-
ognize, and less as one that you should actually follow.

Each time the loop function calls itself, it has a new value for the accumulator, and it
consumes one element of the input list. Eventually, it's going to hit the end of the list,
at which time the [] pattern will match, and the recursive calls will cease.

How well does this function work? For positive integers, it's perfectly cromulent.

ghci> asInt "33"
33

But because we were focusing on how to traverse lists, not error handling, our poor
function misbehaves if we try to feed it nonsense.

ghci> asInt
0

ghci> asInt "potato”

*** Exception: Char.digitToInt: not a digit 'p'

We'll defer fixing our function's shortcomings to Q: 1.

Because the last thing that loop does is simply call itself, it's an example of a tail recursive
function. There's another common idiom in this code, too. Thinking about the struc-
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ture of the list, and handling the empty and non-empty cases separately, is a kind of
approach called structural recursion.

We call the non-recursive case (when the list is empty) the base case (sometimes the
terminating case). We'll see people refer to the case where the function calls itself as the
recursive case (surprise!), or they might give a nod to mathematical induction and call
it the inductive case.

As a useful technique, structural recursion is not confined to lists; we can use it on other
algebraic data types, too. We'll have more to say about it later.

B
o)

What's the big deal about tail recursion?

' “}‘:' In an imperative language, a loop executes in constant space. Lacking
loops, we use tail recursive functions in Haskell instead. Normally, a
recursive function allocates some space each time it applies itself, so it
knows where to return to.

Clearly, a recursive function would be at a huge disadvantage relative
to a loop if it allocated memory for every recursive application: this
would require linear space instead of constant space. However, func-
tional language implementations detect uses of tail recursion, and trans-
form tail recursive calls to run in constant space; this is called tail call
optimisation, abbreviated TCO.

Few imperative language implementations perform TCO; this is why
using any kind of ambitiously functional style in an imperative language
often leads to memory leaks and poor performance.

Transforming every piece of input

Consider another C function, square, which squares every element in an array.

void square(double *out, const double *in, size t length)

for (size t i = 0; 1 < length; i++) {
out[i] = in[i] * in[i];
}

}

This contains a straightforward and common kind of loop, one that does exactly the
same thing to every element of its input array. How might we write this loop in Haskell?
-- file: cho4/Map.hs
square :: [Double] -> [Double]
square (x:xs) = x*x : square xs
square [] =[]

Our square function consists of two pattern matching equations. The first “decon-
structs” the beginning of a non-empty list, to get its head and tail. It squares the first
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element, then puts that on the front of a new list, which is constructed by calling
square on the remainder of the empty list. The second equation ensures that square
halts when it reaches the end of the input list.

The effect of square is to construct a new list that's the same length as its input list, with
every element in the input list substituted with its square in the output list.

Here's another such C loop, one that ensures that every letter in a string is converted
to uppercase.

#include <ctype.h>
char *uppercase(const char *in)
char *out = strdup(in);

if (out != NULL) {
for (size t i = 0; out[i] != "\0'; i++) {
out[i] = toupper(out[i]);

}
}
return out;

}

Let's look at a Haskell equivalent.

-- file: cho4/Map.hs
import Data.Char (toUpper)

upperCase :: String -> String

upperCase (x:xs) = toUpper x : upperCase xs
upperCase [] =[]

Here, we're importing the toUpper function from the standard Data. Char module, which
contains lots of useful functions for working with Char data.

Our upperCase function follows a similar pattern to our earlier square function. It ter-
minates with an empty list when the input list is empty; and when the inputisn't empty,
it calls toUpper on the first element, then constructs a new list cell from that and the
result of calling itself on the rest of the input list.

These examples follow a common pattern for writing recursive functions over lists in
Haskell. The base case handles the situation where our input list is empty. The recursive
case deals with a non-empty list; it does something with the head of the list, and calls
itself recursively on the tail.

Mapping over a list

The square and upperCase functions that we just defined produce new lists that are the
same lengths as their input lists, and do only one piece of work per element. This is

90 | Chapter4: Functional programming



such a common pattern that Haskell's prelude defines a function, map, to make it easier.
map takes a function, and applies it to every element of a list, returning a new list con-
structed from the results of these applications.

Here are our square and upperCase functions rewritten to use map.

-- file: cho4/Map.hs
square2 xs = map squareOne Xxs
where squareOne x = x * x

upperCase2 xs = map toUpper xs

This is our first close look at a function that takes another function as its argument.
We can learn a lot about what map does by simply inspecting its type.

ghci> :type map

map :: (a -> b) -> [a] -> [b]
The signature tells us that map takes two arguments. The first is a function that takes a
value of one type, a, and returns a value of another type, b.

Since map takes a function as argument, we refer to it as a higher-order function. (In
spite of the name, there's nothing mysterious about higher-order functions; it's just a
term for functions that take other functions as arguments, or return functions.)

Since map abstracts out the pattern common to our square and upperCase functions so
that we can reuse it with less boilerplate, we can look at what those functions have in
common and figure out how to implement it ourselves.

-- file: cho4/Map.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f (x:xs) = f x : myMap f xs
myMap _ _ =[]
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w What are those wild cards doing there?

[ f\i' If you're new to functional programming, the reasons for matching pat-
terns in certain ways won't always be obvious. For example, in the def-
inition of myMap above, the first equation binds the function we're map-
ping to the variable f, but the second uses wild cards for both parame-
ters. What's going on?

We use a wild card in place of f to indicate that we aren't calling the
function f on the right hand side of the equation. What about the list
parameter? The list type has two constructors. We've already matched
on the non-empty constructor in the first equation that defines myMap.
By elimination, the constructor in the second equation is necessarily the
empty list constructor, so there's no need to perform a match to see what
its value really is.

As a matter of style, it is fine to use wild cards for well known simple
types like lists and Maybe. For more complicated or less familiar types,
it can be safer and more readable to name constructors explicitly.

We try out our myMap function to give ourselves some assurance that it behaves similarly
to the standard map.

ghci> :module +Data.Char

ghci> map tolLower "SHOUTING"

"shouting"

ghci> myMap toUpper "whispering"

"WHISPERING"

ghci> map negate [1,2,3]

[ -1,-2, '3]
This pattern of spotting a repeated idiom, then abstracting it so we can reuse (and write
less!) code, is a common aspect of Haskell programming. While abstraction isn't unique
to Haskell, higher order functions make it remarkably easy.

Selecting pieces of input

Another common operation on a sequence of data is to comb through it for elements
that satisfy some criterion. Here's a function that walks a list of numbers and returns
those that are odd. Our code has a recursive case that's a bit more complex than our
earlier functions: it only puts a number in the list it returns if the number is odd. Using
a guard expresses this nicely.

-- file: cho4/Filter.hs
oddList :: [Int] -> [Int]

oddList (x:xs) | odd x = x : oddList xs
| otherwise = oddList xs
oddList _ =[]
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Let's see that in action.

ghci> oddList [1,1,2,3,5,8,13,21,34]
[1,1,3,5,13,21]

Once again, this idiom is so common that the Prelude defines a function, filter, which
we have already introduced. It removes the need for boilerplate code to recurse over
the list.

ghci> :type filter

filter :: (a -> Bool) -> [a] -> [a]

ghci> filter odd [3,1,4,1,5,9,2,6,5]

[3,1,1,5,9,5]

The filter function takes a predicate and applies it to every element in its input list,
returning a list of only those for which the predicate evaluates to True. We'll revisit
filter again soon, in “Folding from the right.

Computing one answer over a collection

Another common thing to do with a collection is reduce it to a single value. A simple
example of this is summing the values of a list.

-- file: cho4/Sum.hs

mySum xs = helper 0 xs

where helper acc (x:xs) = helper (acc + x) xs
helper acc _ = acc

Our helper function is tail recursive, and uses an accumulator parameter, acc, to hold
the current partial sum of the list. As we already saw with asInt, thisis a “natural” way
to represent a loop in a pure functional language.

For something a little more complicated, let's take a look at the Adler-32 checksum.
This is a popular checksum algorithm; it concatenates two 16-bit checksums into a
single 32-bit checksum. The first checksum is the sum of all input bytes, plus one. The
second is the sum of all intermediate values of the first checksum. In each case, the
sums are computed modulo 65521. Here's a straightforward, unoptimised Java imple-
mentation. (It's safe to skip it if you don't read Java.)

public class Adler32
{

private static final int base = 65521;

public static int compute(byte[] data, int offset, int length)
{

inta=1, b =0;

for (int i = offset; i < offset + length; i++) {
a = (a + (data[i] & oxff)) % base;
b = (a + b) % base;

}

return (b << 16) | a;
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}

Although Adler-32 is a simple checksum, this code isn't particularly easy to read on
account of the bit-twiddling involved. Can we do any better with a Haskell implemen-
tation?

-- file: cho4/Adler32.hs

import Data.Char (ord)
import Data.Bits (shiftL, (.&.), (.].))

base = 65521

adler32 xs = helper 1 0 xs
where helper a b (x:xs) = let a' = (a + (ord x .&. 0xff)) “mod" base
b' = (a' + b) “mod’ base
in helper a' b' xs
helper a b _ = (b “shiftL® 16) .|. a
This code isn't exactly easier to follow than the Java code, but let's look at what's going
on. First of all, we've introduced some new functions. The shiftlL function implements
a logical shift left; (.&.) provides bitwise “and”; and (.|.) provides bitwise “or”.

Once again, our helper function is tail recursive. We've turned the two variables we
updated on every loop iteration in Java into accumulator parameters. When our re-
cursion terminates on the end of the input list, we compute our checksum and return it.

If we take a step back, we can restructure our Haskell adler32 to more closely resemble
our earlier mySum function. Instead of two accumulator parameters, we can use a pair
as the accumulator.
-- file: cho4/Adler32.hs
adler32_try2 xs = helper (1,0) xs
where helper (a,b) (x:xs) =
let a' = (a + (ord x .&. 0oxff)) “mod’ base
b' = (a' + b) “mod" base
in helper (a',b') xs
helper (a,b) _ = (b “shiftL® 16) .|. a

Why would we want to make this seemingly meaningless structural change? Because
as we've already seen with map and filter, we can extract the common behavior shared
by mySum and adler32_try2 into a higher-order function. We can describe this behavior

as “do something to every element of a list, updating an accumulator as we go, and
returning the accumulator when we're done”.

This kind of function is called a fold, because it “folds up” a list. There are two kinds
of fold over lists, foldl for folding from the left (the start) and foldr for folding from
the right (the end).

The left fold

Here is the definition of foldl.
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-- file: cho4/Fold.hs
foldl :: (@ ->b ->a) ->a ->[b] ->a

foldl step zero (x:xs) = foldl step (step zero x) xs
foldl _ zero [] = zero

The foldl function takes a “step” function, an initial value for its accumulator, and a
list. The “step” takes an accumulator and an element from the list, and returns a new
accumulator value. All foldl does is call the “stepper” on the current accumulator and
an element of the list, and passes the new accumulator value to itself recursively to
consume the rest of the list.

Werefer to foldl asa “left fold” because it consumes the list from left (the head) to right.

Here's a rewrite of mySum using foldl.

-- file: cho4/Sum.hs
foldlSum xs = foldl step 0 xs
where step acc x = acc + x

Thatlocal function step just adds two numbers, so let's simply use the addition operator
instead, and eliminate the unnecessary where clause.
-- file: cho4/Sum.hs

niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs

Notice how much simpler this code is than our original mySum? We're no longer using
explicit recursion, because foldl takes care of that for us. We've simplified our problem
down to two things: what the initial value of the accumulator should be (the second
parameter to foldl), and how to update the accumulator (the (+) function). As an added
bonus, our code is now shorter, too, which makes it easier to understand.

Let's take a deeper look at what foldl is doing here, by manually writing out each step
in its evaluation when we call niceSum [1,2,3].

-- file: cho4/Fold.hs
foldl (+) 0 (1:2:3:[])
== foldl (+) (0 + 1) (2:3:[1)
== foldl (+) ((0 + 1) + 2) (3:I[D
foldl (+) (((0 + 1) +2) +3) []
(((0 + 1) +2) +3)

We can rewrite adler32_try2 using foldl to let us focus on the details that are impor-
tant.
-- file: cho4/Adler32.hs
adler32 foldl xs = let (a, b) = foldl step (1, 0) xs
in (b “shiftL® 16) .|. a
where step (a, b) x = let a' = a + (ord x .&. Oxff)
in (a' “mod’ base, (a' + b) “mod" base)

Here, our accumulator is a pair, so the result of foldl will be, too. We pull the final
accumulator apart when foldl returns, and bit-twiddle it into a “proper” checksum.
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Why use folds, maps, and filters?

A quick glance reveals that adler32_foldl isn't really any shorter than adler32_try2.
Why should we use a fold in this case? The advantage here lies in the fact that folds are
extremely common in Haskell, and they have regular, predictable behavior.

This means that a reader with a little experience will have an easier time understanding
a use of a fold than code that uses explicit recursion. A fold isn't going to produce any
surprises, but the behavior of a function that recurses explicitly isn't immediately ob-
vious. Explicit recursion requires us to read closely to understand exactly what's going
on.

This line of reasoning applies to other higher-order library functions, including those
we've already seen, map and filter. Because they're library functions with well-defined
behavior, we only need to learn what they do once, and we'll have an advantage when
we need to understand any code that uses them. These improvements in readability
also carry over to writing code. Once we start to think with higher order functions in
mind, we'll produce concise code more quickly.

Folding from the right

The counterpart to foldl is foldr, which folds from the right of a list.
-- file: cho4/Fold.hs
foldr :: (@ ->b ->b) ->b ->[a] ->b

foldr step zero (x:xs)
foldr _ zero []

step x (foldr step zero xs)
zero

Let's follow the same manual evaluation process with foldr (+) 0 [1,2,3] as we did
with niceSumin “The left fold.

-- file: cho4/Fold.hs

foldr (+) 0 (1:2:3:[])

+ foldr (+) o0 (2
+ (2 + foldr (+) 0 (3
+ (2 + (3 + foldr (+) o []
+(2+(3+0))

:[1)
D

3
[
)

1
1
1
1

The difference between foldl and foldr should be clear from looking at where the
parentheses and the “empty list” elements show up. With foldl, the empty list element
is on the left, and all the parentheses group to the left. With foldr, the zero value is on
the right, and the parentheses group to the right.

There is a lovely intuitive explanation of how foldr works: it replaces the empty list
with the zero value, and every constructor in the list with an application of the step
function.

-- file: cho4/Fold.hs

1:(2:(3:1[1)
1+ (2+(3+0))
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At first glance, foldr might seem less useful than foldl: what use is a function that folds
from the right? But consider the Prelude's filter function, which we last encountered
in “Selecting pieces of input. If we write filter using explicit recursion, it will look
something like this.
-- file: cho4/Fold.hs
filter :: (a -> Bool) -> [a] -> [a]
filter p [] =[]
filter p (x:xs)
| p x = x : filter p xs
| otherwise = filter p xs

Perhaps surprisingly, though, we can write filter as a fold, using foldr.

-- file: cho4/Fold.hs
myFilter p xs = foldr step [] xs
where step x ys | p x =X :ys
| otherwise = ys

This is the sort of definition that could cause us a headache, so let's examine it in a little
depth. Like foldl, foldr takes a function and a base case (what to do when the input
list is empty) as arguments. From reading the type of filter, we know that our
myFilter function must return a list of the same type as it consumes, so the base case
should be a list of this type, and the step helper function must return a list.

Since we know that foldr calls step on one element of the input list at a time, with
the accumulator as its second argument, what step does must be quite simple. If the
predicate returns True, it pushes that element onto the accumulated list; otherwise, it
leaves the list untouched.

The class of functions that we can express using foldr is called primitive recursive. A
surprisingly large number of list manipulation functions are primitive recursive. For
example, here's map written in terms of foldr.

-- file: cho4/Fold.hs
myMap :: (a -> b) -> [a] -> [b]

myMap f xs = foldr step [] xs
where step x ys = f x : ys
In fact, we can even write foldl using foldr!
-- file: cho4/Fold.hs
myFoldl :: (a -> b ->a) -> a -> [b] -> a

myFoldl f z xs = foldr step id xs z
where step x g a = g (f a x)
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- Understanding foldlin terms of foldr

[ f\t' If you want to set yourself a solid challenge, try to follow the above
definition of foldl using foldr. Be warned: this is not trivial! You might
want to have the following tools at hand: some headache pills and a
glass of water, ghci (so that you can find out what the id function does),
and a pencil and paper.

You will want to follow the same manual evaluation process as we out-
lined above to see what foldl and foldr were really doing. If you get
stuck, you may find the task easier after reading “Partial function ap-
plication and currying.

Returning to our earlier intuitive explanation of what foldr does, another useful way
to think about it is that it transforms its input list. Its first two arguments are “what to
do with each head/tail element of the list”, and “what to substitute for the end of the
list”.
The “identity” transformation with foldr thus replaces the empty list with itself, and
applies the list constructor to each head/tail pair:

-- file: cho4/Fold.hs

identity :: [a] -> [a]
identity xs = foldr (:) [] xs

It transforms a list into a copy of itself.

ghci> identity [1,2,3]

[1,2,3]
If foldr replaces the end of a list with some other value, this gives us another way to
look at Haskell's list append function, (++).

ghci> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]
All we have to do to append a list onto another is substitute that second list for the end
of our first list.

-- file: cho4/Fold.hs
append :: [a] -> [a] -> [a]
append xs ys = foldr (:) ys xs

Let's try this out.

ghci> append [1,2,3] [4,5,6]
[1,2,3,4,5,6]

Here, we replace each list constructor with another list constructor, but we replace the
empty list with the list we want to append onto the end of our first list.

As our extended treatment of folds should indicate, the foldr function is nearly as
important a member of our list-programming toolbox as the more basic list functions
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we saw in “Working with lists. It can consume and produce a list incrementally, which
makes it useful for writing lazy data processing code.

Left folds, laziness, and space leaks

To keep our initial discussion simple, we used foldl throughout most of this section.
This is convenient for testing, but we will never use foldl in practice.

The reason has to do with Haskell's non-strict evaluation. If we apply foldl (+)
[1,2,3], it evaluates to the expression (((0 + 1) + 2) + 3). We can see this occur if
we revisit the way in which the function gets expanded.

-- file: cho4/Fold.hs

foldl (+) 0 (1:2:3:[])
foldl (+) (0 + 1) (2:3:[1)
foldl (+) ((0 + 1) + 2) 3:[DH
foldl (+) (((0 + 1) +2) +3) []

(((0 + 1) +2) +3)

The final expression will not be evaluated to 6 until its value is demanded. Before it is
evaluated, it must be stored as a thunk. Not surprisingly, a thunk is more expensive to
store than a single number, and the more complex the thunked expression, the more
space it needs. For something cheap like arithmetic, thunking an expresion is more
computationally expensive than evaluating it immediately. We thus end up paying both
in space and in time.

When GHC is evaluating a thunked expression, it uses an internal stack to do so.
Because a thunked expression could potentially be infinitely large, GHC places a fixed
limit on the maximum size of this stack. Thanks to this limit, we can try a large thunked
expression in ghci without needing to worry that it might consume all of memory.

ghci> foldl (+) 0 [1..1000]
500500

From looking at the expansion above, we can surmise that this creates a thunk that
consists of 1000 integers and 999 applications of (+). That's a lot of memory and effort
to represent a single number! With a larger expression, although the size is still modest,
the results are more dramatic.

ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow

On small expressions, foldl will work correctly but slowly, due to the thunking over-
head that it incurs. We refer to this invisible thunking as a space leak, because our code
is operating normally, but using far more memory than it should.

On larger expressions, code with a space leak will simply fail, as above. A space leak
with foldl is a classic roadblock for new Haskell programmers. Fortunately, this is easy
to avoid.

How to think about loops | 99



The Data.List module defines a function named foldl' that is similar to foldl, but
does not build up thunks. The difference in behavior between the two is immediately
obvious.

ghci> foldl (+) 0 [1..1000000]

*** Exception: stack overflow

ghci> :module +Data.list

ghci> foldl' (+) 0 [1..1000000]
500000500000

Due to the thunking behavior of foldl, it is wise to avoid this function in real programs:
even if it doesn't fail outright, it will be unnecessarily inefficient. Instead, import
Data.List and use foldl'.

Exercises
1. Use a fold (choosing the appropriate fold will make your code much simpler) to
rewrite and improve upon the asInt function from “Explicit recursion.

-- file: cho04/cho4.exercises.hs
asInt_fold :: String -> Int

Your function should behave as follows.
ghci> asInt_fold "101"

101

ghci> asInt_fold "-31337"
-31337

ghci> asInt_fold "1798"
1798

Extend your function to handle the following kinds of exceptional conditions by
calling error.

ghci> asInt_fold ""

0

ghci> asInt_fold "-"

0

ghci> asInt_fold "-3"

-3

ghci> asInt_fold "2.7"

*¥k Exception: Char.digitToInt: not a digit
ghci> asInt_fold "314159265358979323846"
564616105916946374

2. The asInt_fold function uses error, so its callers cannot handle errors. Rewrite
it to fix this problem.

-- file: cho4/cho4.exercises.hs
type ErrorMessage = String
asInt_either :: String -> Either ErrorMessage Int

ghci> asInt_either "33"
Right 33
ghci> asInt_either "foo"

o

Left "non-digit 'o
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3. The Prelude function concat concatenates a list of lists into a single list, and has
the following type.

-- file: cho04/cho4.exercises.hs
concat :: [[a]] -> [a]

Write your own definition of concat using foldr.

4. Write your own definition of the standard takeWhile function, first using explicit
recursion, then foldr.

5. TheData.List module defines a function, groupBy, which has the following type.
-- file: cho4/cho4.exercises.hs
groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
Use ghci to load the Data.List module and figure out what groupBy does, then
write your own implementation using a fold.
6.  How many of the following Prelude functions can you rewrite using list folds?
* any
* cycle
* words
* unlines

For those functions where you can use either foldl' or foldr, which is more
appropriate in each case?

Further reading

The article Hutton99 is an excellent and deep tutorial covering folds. It includes many
examples of how to use simple, systematic calculation techniques to turn functions that
use explicit recursion into folds.

Anonymous (lambda) functions

In many of the function definitions we've seen so far, we've written short helper func-
tions.
-- file: cho4/Partial.hs

isInAny needle haystack = any inSequence haystack
where inSequence s = needle “isInfixOf s

Haskell lets us write completely anonymous functions, which we can use to avoid the
need to give names to our helper functions. Anonymous functions are often called
“lambda” functions, in a nod to their heritage in the lambda calculus. We introduce
an anonymous function with a backslash character, \, pronounced lambda™. This is
followed by the function's arguments (which can include patterns), then an arrow ->
to introduce the function's body.
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Lambdas are most easily illustrated by example. Here's a rewrite of isInAny using an
anonymous function.

-- file: cho4/Partial.hs
isInAny2 needle haystack = any (\s -> needle “isInfixOf' s) haystack

We've wrapped the lambda in parentheses here so that Haskell can tell where the func-
tion body ends.

Anonymous functions behave in every respect identically to functions that have names,
but Haskell places a few important restrictions on how we can define them. Most im-
portantly, while we can write a normal function using multiple clauses containing dif-
ferent patterns and guards, a lambda can only have a single clause in its definition.

The limitation to a single clause restricts how we can use patterns in the definition of
alambda. We'll usually write a normal function with several clauses to cover different
pattern matching possibilities.

-- file: cho4/Lambda.hs

safeHead (x: ) = Just x
safeHead _ = Nothing

But as we can't write multiple clauses to define a lambda, we must be certain that any
patterns we use will match.

-- file: cho4/Lambda.hs
unsafeHead = \(x:_) -> x

This definition of unsafeHead will explode in our faces if we call it with a value on which
pattern matching fails.

ghci> :type unsafeHead

unsafeHead :: [t] -> t

ghci> unsafeHead [1]

1

ghci> unsafeHead []
*** Exception: Lambda.hs:7:13-23: Non-exhaustive patterns in lambda

The definition typechecks, so it will compile, so the error will occur at runtime. The
moral of this story is to be careful in how you use patterns when defining an anonymous
function: make sure your patterns can't fail!

Another thing to notice about the isInAny and isInAny2 functions we showed above is
that the first version, using a helper function that has a name, is a little easier to read
than the version that plops an anonymous function into the middle. The named helper
function doesn'tdisrupt the “flow” of the function in which it's used, and the judiciously
chosen name gives us a little bit of information about what the function is expected to

do.

T The backslash was chosen for its visual resemblance to the Greek letter lambda, x. Although GHC can accept
Unicode input, it correctly treats A as a letter, not as a synonym for \.
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In contrast, when we run across a lambda in the middle of a function body, we have to
switch gears and read its definition fairly carefully to understand what it does. To help
with readability and maintainability, then, we tend to avoid lambdas in many situations
where we could use them to trim a few characters from a function definition. Very often,
we'll use a partially applied function instead, resulting in clearer and more readable
code than either a lambda or an explicit function. Don't know what a partially applied
function is yet? Read on!

We don'tintend these caveats to suggest that lambdas are useless, merely that we ought
to be mindful of the potential pitfalls when we're thinking of using them. In later chap-
ters, we will see that they are often invaluable as “glue”.

Partial function application and currying

You may wonder why the -> arrow is used for what seems to be two purposes in the
type signature of a function.

ghci> :type dropWhile

dropwhile :: (a -> Bool) -> [a] -> [a]
It looks like the -> is separating the arguments to dropWhile from each other, but that
italso separates the arguments from the return type. Butin fact -> has only one meaning;:
it denotes a function that takes an argument of the type on the left, and returns a value
of the type on the right.

The implication here is very important: in Haskell, all functions take only one argu-
ment. While dropWhile looks like a function that takes two arguments, it is actually a
function of one argument, which returns a function that takes one argument. Here's a
perfectly valid Haskell expression.

ghci> :module +Data.Char

ghci> :type dropWhile isSpace

dropWhile isSpace :: [Char] -> [Char]
Well, that looks useful. The value dropWhile isSpace is a function that strips leading
white space from a string. How is this useful? As one example, we can use it as an
argument to a higher order function.

ghci> map (dropWhile isSpace) [" a","f"," e"]

["all’ II{"’ llell]
Every time we supply an argument to a function, we can “chop” an element off the
front of its type signature. Let's take zip3 as an example to see what we mean; this is a
function that zips three lists into a list of three-tuples.

ghci> :type zip3

zip3 :: [a] -> [b] -> [c] -> [(a, b, C)]

ghci> zip3 "foo" "bar" "quux"
[(I'FI)'bIJIq'))(lol)Ial)'ul))('()"lrl)‘uI)]
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If we apply zip3 with just one argument, we get a function that accepts two arguments.
No matter what arguments we supply to this compound function, its first argument
will always be the fixed value we specified.

ghci> :type zip3 "foo"

zip3 "foo" :: [b] -> [c] -> [(Char, b, c)]

ghci> let zip3foo = zip3 "foo"

ghci> :type zip3foo

zip3foo :: [b] -> [c] -> [(Char, b, c)]

ghci> (zip3 "foo") "aaa" "bbb"

[("f','a",'b"),("0","a",'b"), (0", a","'b")]

ghci> zip3foo "aaa" "bbb"

[("f','a",'b"),("0","a",'b"), (0", a","'b")]

ghci> zip3foo [1,2,3] [True,False,True]

[("f',1,True),('0",2,False),('0",3,True)]

When we pass fewer arguments to a function than the function can accept, we call this
partial application of the function: we're applying the function to only some of its ar-
guments.

In the example above, we have a partially applied function, zip3 "foo", and a new
function, zip3foo. We can see that the type signatures of the two and their behavior
are identical.

This applies just as well if we fix two arguments, giving us a function of just one argu-
ment.

ghci> let zip3foobar = zip3 "foo" "bar"

ghci> :type zip3foobar

zip3foobar :: [c] -> [(Char, Char, c)]

ghci> zip3foobar "quux"

[(Ifl)'bl,Iql),(lol,Ial,lul)’(lol,lrl)lul)]

ghci> zip3foobar [1,2]

[("f','b",1),("0","a",2)]
Partial function application lets us avoid writing tiresome throwaway functions. It's
often more useful for this purpose than the anonymous functions we introduced in
“Anonymous (lambda) functions. Looking back at the isInAny function we defined
there, here's how we'd use a partially applied function instead of a named helper func-
tion or a lambda.

-- file: cho4/Partial.hs
isInAny3 needle haystack = any (isInfixOf needle) haystack

Here, the expression isInfix0f needle is the partially applied function. We're taking
the function isInfix0f, and “fixing” its first argument to be the needle variable from
our parameter list. This gives us a partially applied function that has exactly the same
type and behavior as the helper and lambda in our earlier definitions.

Partial function application is named currying, after the logician Haskell Curry (for
whom the Haskell language is named).
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As another example of currying in use, let's return to the list-summing function we
wrote in “The left fold.
-- file: cho4/Sum.hs

niceSum :: [Integer] -> Integer
niceSum xs = foldl (+) 0 xs

We don't need to fully apply foldl; we can omit the list xs from both the parameter list
and the parameters to foldl, and we'll end up with a more compact function that has
the same type.

-- file: cho4/Sum.hs

nicerSum :: [Integer] -> Integer
nicerSum = foldl (+) 0

Sections

Haskell provides a handy notational shortcut to let us write a partially applied function
in infix style. If we enclose an operator in parentheses, we can supply its left or right
argument inside the parentheses to get a partially applied function. This kind of partial
application is called a section.

ghci> (1+) 2

3

ghci> map (*3) [24,36]

[72,108]

ghci> map (2%) [3,5,7,9]

[8,32,128,512]
If we provide the left argument inside the section, then calling the resulting function
with one argument supplies the operator's right argument. And vice versa.

Recall that we can wrap a function name in backquotes to use it as an infix operator.
This lets us use sections with functions.

ghci> :type (“elem’ ['a'..'z'])

(Celem” ['a'..'z']) :: Char -> Bool
The above definition fixes elem's second argument, giving us a function that checks to
see whether its argument is a lowercase letter.

ghci> (“elem” ['a'..'z']) 'f'

True

Using this as an argument to all, we get a function that checks an entire string to see
if it's all lowercase.

ghci> all (“elem’ ['a'..'z']) "Frobozz"

False

If we use this style, we can further improve the readability of our earlier isInAny3 func-
tion.

-- file: cho4/Partial.hs
isInAny4 needle haystack = any (needle “isInfixOf') haystack
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As-patterns

Haskell's tails function, in the Data.List module, generalises the tail function we
introduced earlier. Instead of returning one “tail” of a list, it returns all of them.

ghci> :m +Data.List

ghci> tail "foobar"

"oobar"

ghci> tail (tail "foobar")

"obar"

ghci> tails "foobar"

non non now_noun

["foobar","oobar","obar","bar","ar","r",""]

Each of these strings is a suffix of the initial string, so tails produces a list of all suffixes,
plus an extra empty list at the end. It always produces that extra empty list, even when
its input list is empty.

ghci> tails []
[[1]

What if we want a function that behaves like tails, but which only returns the non-
empty suffixes? One possibility would be for us to write our own version by hand. We'll
use a new piece of notation, the @ symbol.

-- file: cho4/SuffixTree.hs

suffixes :: [a] -> [[a]]

suffixes xs@(_:xs') = xs : suffixes xs'

suffixes =[]

The pattern xs@(_:xs") is called an as-pattern, and it means “bind the variable xs to
the value that matches the right side of the @ symbol”.

In our example, if the pattern after the “@” matches, xs will be bound to the entire list
that matched, and xs' to all but the head of the list (we used the wild card _ pattern to
indicate that we're not interested in the value of the head of the list).

ghci> tails "foo"

non_n nu]

["foo","00","0",

ghci> suffixes "foo"

[Ilfooll , llooll , Iloll]
The as-pattern makes our code more readable. To see how it helps, let us compare a
definition that lacks an as-pattern.

-- file: cho4/SuffixTree.hs

noAsPattern :: [a] -> [[a]]

noAsPattern (x:xs) = (x:xs) : noAsPattern xs
noAsPattern _ = []

Here, the list that we've deconstructed in the pattern match just gets put right back
together in the body of the function.

As-patterns have a more practical use than simple readability: they can help us to share
data instead of copying it. In our definition of noAsPattern, when we match (x:xs), we
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construct a new copy of it in the body of our function. This causes us to allocate a new
list node at run time. That may be cheap, but it isn't free. In contrast, when we defined
suffixes, we reused the value xs that we matched with our as-pattern. Since we reuse
an existing value, we avoid a little allocation.

Code reuse through composition

It seems a shame to introduce a new function, suffixes, that does almost the same
thing as the existing tails function. Surely we can do better?

Recall the init function we introduced in “Working with lists: it returns all but the last
element of a list.

-- file: cho4/SuffixTree.hs
suffixes2 xs = init (tails xs)

This suffixes2 function behaves identically to suffixes, but it's a single line of code.

ghci> suffixes2 "foo"

["foo","00","0"]

If we take a step back, we see the glimmer of a pattern here: we're applying a function,
then applying another function to its result. Let's turn that pattern into a function
definition.

-- file: cho4/SuffixTree.hs

compose :: (b ->¢c) -> (a->b) ->a->c

compose f g x = f (g x)
We now have a function, compose, that we can use to “glue” two other functions to-
gether.

-- file: cho4/SuffixTree.hs
suffixes3 xs = compose init tails xs

Haskell's automatic currying lets us drop the xs variable, so we can make our definition
even shorter.

-- file: cho4/SuffixTree.hs
suffixes4 = compose init tails

Fortunately, we don't need to write our own compose function. Plugging functions into
each other like this is so common that the Prelude provides function composition via
the (.) operator.

-- file: cho4/SuffixTree.hs
suffixes5 = init . tails

The (.) operator isn't a special piece of language syntax; it's just a normal operator.
ghci> :type (.)
(.) ::(b->c) > (a->b) ->a->c
ghci> :type suffixes
suffixes :: [a] -> [[a]]
ghci> :type suffixess
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suffixess :: [a] -> [[a]]
ghci> suffixess "foo"

nonn

["foo","00","0"]

We can create new functions at any time by writing chains of composed functions,
stitched together with (.), so long (of course) as the result type of the function on the
right of each (.) matches the type of parameter that the function on the left can accept.

As an example, let's solve a simple puzzle: counting the number of words in a string
that begin with a capital letter.

ghci> :module +Data.Char

ghci> let capCount = length . filter (isUpper . head) . words

ghci> capCount "Hello there, Mom!"
2

We can understand what this composed function does by examining its pieces. The
(.) function is right associative, so we will proceed from right to left.

ghci> :type words

words :: String -> [String]
The words function has a result type of [String], so whatever is on the left side of (.)
must accept a compatible argument.

ghci> :type isUpper . head
isUpper . head :: [Char] -> Bool

This function returns True if a word begins with a capital letter (try it in ghci), so filter
(isUpper . head) returns a list of Strings containing only words that begin with capital
letters.

ghci> :type filter (isUpper . head)
filter (isUpper . head) :: [[Char]] -> [[Char]]

Since this expression returns a list, all that remains is calculate the length of the list,
which we do with another composition.

Here's another example, drawn from a real application. We want to extract a list of
macro names from a C header file shipped with libpcap, a popular network packet
filtering library. The header file contains a large number definitions of the following
form.

#tdefine DLT_EN10MB 1 /* Ethernet (10Mb) */
#tdefine DLT_EN3MB 2 /* Experimental Ethernet (3Mb) */
#tdefine DLT_AX25 3 /* Amateur Radio AX.25 */

Our goal is to extract names such as DLT_EN10MB and DLT_AX25.

-- file: cho4/dlts.hs
import Data.List (isPrefixOf)

dlts :: String -> [String]

dlts = foldr step [] . lines
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We treat an entire file as a string, split it up with lines, then apply foldr step [] to
the resulting list of lines. The step helper function operates on a single line.
-- file: cho4/dlts.hs
where step 1 ds
| "#define DLT_" “isPrefixOf' 1 = secondWord 1 : ds

| otherwise = ds
secondWord = head . tail . words

If we match a macro definition with our guard expression, we cons the name of the
macro onto the head of the list we're returning; otherwise, we leave the list untouched.

While the individual functions in the body of secondWord are by now familiar to us, it
can take a little practice to piece together a chain of compositions like this. Let's walk
through the procedure.

Once again, we proceed from right to left. The first function is words.
ghci> :type words
words :: String -> [String]
ghci> words "#define DLT_CHAOS 5"
["#define","DLT_CHAOS","5"]

We then apply tail to the result of words.
ghci> :type tail
tail :: [a] -> [a]
ghci> tail ["#define","DLT_CHAOS","5"]
["DLT_CHAOS","5"]
ghci> :type tail . words
tail . words :: String -> [String]
ghci> (tail . words) "#define DLT_CHAOS 5"
["DLT_CHAOS","5"]

Finally, applying head to the result of drop 1 . words will give us the name of our macro.

ghci> :type head . tail . words

head . tail . words :: String -> String

ghci> (head . tail . words) "#define DLT_CHAOS 5"
"DLT_CHAOS"

Use your head wisely

After warning against unsafe list functions in “Safely and sanely working with crashy
functions, here we are calling both head and tail, two of those unsafe list functions.
What gives?

In this case, we can assure ourselves by inspection that we're safe from a runtime failure.
The pattern guard in the definition of step contains two words, so when we apply
words to any string that makes it past the guard, we'll have a list of at least two elements,
"#define" and some macro beginning with "DLT_".

This the kind of reasoning we ought to do to convince ourselves that our code won't
explode when we call partial functions. Don't forget our earlier admonition: calling
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unsafe functions like this requires care, and can often make our code more fragile in
subtle ways. If we for some reason modified the pattern guard to only contain one word,
we could expose ourselves to the possibility of a crash, as the body of the function
assumes that it will receive two words.

Tips for writing readable code

So far in this chapter, we've come across two tempting looking features of Haskell: tail
recursion and anonymous functions. As nice as these are, we don't often want to use
them.

Many list manipulation operations can be most easily expressed using combinations
of library functions such as map, take, and filter. Without a doubt, it takes some
practice to get used to using these. In return for our initial investment, we can write
and read code more quickly, and with fewer bugs.

The reason for this is simple. A tail recursive function definition has the same problem
as a loop in an imperative language: it's completely general. It might perform some
filtering, some mapping, or who knows what else. We are forced to look in detail at
the entire definition of the function to see what it's really doing. In contrast, map and
most other list manipulation functions do only one thing. We can take for granted what
these simple building blocks do, and focus on the idea the code is trying to express, not
the minute details of how it's manipulating its inputs.

In the middle ground between tail recursive functions (with complete generality) and
our toolbox of list manipulation functions (each of which does one thing) lie the folds.
A fold takes more effort to understand than, say, a composition of map and filter that
does the same thing, but it behaves more regularly and predictably than a tail recursive
function. As a general rule, don't use a fold if you can compose some library functions,
but otherwise try to use a fold in preference to a hand-rolled a tail recursive loop.

As for anonymous functions, they tend to interrupt the “flow” of reading a piece of
code. It is very often as easy to write a local function definition in a let or where clause,
and use that, as it is to put an anonymous function into place. The relative advantages
of a named function are twofold: we don't need to understand the function's definition
when we're reading the code that uses it; and a well chosen function name acts as a tiny
piece of local documentation.

Space leaks and strict evaluation

The foldl function that we discussed earlier is not the only place where space leaks can
arise in Haskell code. We will use it to illustrate how non-strict evaluation can some-
times be problematic, and how to solve the difficulties that can arise.
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Do you need to know all of this right now?

[ f\i' It is perfectly reasonable to skip this section until you encounter a space
leak “in the wild”. Provided you use foldr if you are generating a list,
and foldl' instead of foldl otherwise, space leaks are unlikely to bother
you in practice for a while.

Avoiding space leaks with seq

We refer to an expression that is not evaluated lazily as strict, so foldl' is a strict left
fold. It bypasses Haskell's usual non-strict evaluation through the use of a special func-
tion named seq.
-- file: cho4/Fold.hs
foldl' _ zero []
foldl' step zero (x:xs)

let new = step zero x
in new “seq” foldl' step new xs

Zero

This seq function has a peculiar type, hinting that it is not playing by the usual rules.
ghci> :type seq
seq ::a->t >t

[t operates as follows: when a seq expression is evaluated, it forces its first argument to
be evaluated, then returns its second argument. It doesn't actually do anything with the
first argument: seq exists solely as a way to force that value to be evaluated. Let's walk
through a brief application to see what happens.

-- file: cho4/Fold.hs
foldl' (+) 1 (2:[])
This expands as follows.

-- file: cho4/Fold.hs

let new = 1 + 2
in new “seq” foldl' (+) new []
The use of seq forcibly evaluates new to 3, and returns its second argument.
-- file: cho4/Fold.hs
foldl' (+) 3 []
We end up with the following result.
-- file: cho4/Fold.hs
3

Thanks to seq, there are no thunks in sight.
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Learning to use seq

Without some direction, there is an element of mystery to using seq effectively. Here
are some useful rules for using it well.

To have any effect, a seq expression must be the first thing evaluated in an expression.

-- file: cho4/Fold.hs

-- incorrect: seq is hidden by the application of someFunc

-- since someFunc will be evaluated first, seq may occur too late
hiddenInside x y = someFunc (x “seq’ y)

-- incorrect: a variation of the above mistake
hiddenBylLet x y z = let a = x “seq” someFunc y
in anotherFunc a z

-- correct: seq will be evaluated first, forcing evaluation of x
onTheOutside x y = x “seq” someFunc y

To strictly evaluate several values, chain applications of seq together.

-- file: cho4/Fold.hs
chained x y z = x “seq” y “seq” someFunc z

A common mistake is to try to use seq with two unrelated expressions.

-- file: cho4/Fold.hs
badExpression step zero (x:xs) =
seq (step zero x)
(badExpression step (step zero x) xs)

Here, the apparent intention is to evaluate step zero x strictly. Since the expression is
duplicated in the body of the function, strictly evaluating the first instance of it will
have no effect on the second. The use of let from the definition of foldl' above shows
how to achieve this effect correctly.

When evaluating an expression, seq stops as soon as it reaches a constructor. For simple
types like numbers, this means that it will evaluate them completely. Algebraic data
types are a different story. Consider the value (1+2):(3+4):[]. If we apply seq to this,
it will evaluate the (1+2) thunk. Since it will stop when it reaches the first (:) con-
structor, it will have no effect on the second thunk. The same is true for tuples: seq
((1+2),(3+4)) True will do nothing to the thunks inside the pair, since it immediately
hits the pair's constructor.
If necessary, we can use normal functional programming techniques to work around
these limitations.

-- file: cho4/Fold.hs

strictPair (a,b) = a “seq” b “seq” (a,b)

strictlist (x:xs) = x ‘seq’ x : strictlList xs
strictlist [] =[]

It is important to understand that seq isn't free: it has to perform a check at runtime to
see if an expression has been evaluated. Use it sparingly. For instance, while our
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strictPair function evaluates the contents of a pair up to the first constructor, it adds
the overheads of pattern matching, two applications of seq, and the construction of a
new tuple. If we were to measure its performance in the inner loop of a benchmark, we
might find it to slow the program down.

Aside from its performance cost if overused, seq is not a miracle cure-all for memory
consumption problems. Just because you can evaluate something strictly doesn't mean
you should. Careless use of seq may do nothing at all; move existing space leaks around;
or introduce new leaks.

The best guides to whether seq is necessary, and how well it is working, are performance
measurement and profiling, which we will cover in Chapter 25. From a base of empirical
measurement, you will develop a reliable sense of when seq is most useful.
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CHAPTER 5
Writing a library: working with JSON
data

A whirlwind tour of JSON

In this chapter, we'll develop a small, but complete, Haskell library. Our library will
manipulate and serialize data in a popular form known as JSON.

The JSON (JavaScript Object Notation) language is a small, simple representation for
storing and transmitting structured data, for example over a network connection. It is
most commonly used to transfer data from a web service to a browser-based JavaScript
application. The JSON format is described at www.json.org (http://www.json.org/), and
in greater detail by RFC 4627 (http://www.ietf.org/rfc/rfc4627.txt).

JSON supports four basic types of value: strings, numbers, booleans, and a special value
named null.

"a string" 12345 true
null

The language provides two compound types: an array is an ordered sequence of values,
and an object is an unordered collection of name/value pairs. The names in an object
are always strings; the values in an object or array can be of any type.

[-3.14, true, null, "a string"]
{"numbers": [1,2,3,4,5], "useful": false}

Representing JSON data in Haskell

To work with JSON data in Haskell, we use an algebraic data type to represent the
range of possible JSON types.

-- file: cho5/SimpleJSON.hs

data JValue = JString String
| INumber Double
| JBool Bool
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| INull
| JObject [(String, Jvalue)]
| JArray [JValue]

deriving (Eq, Ord, Show)

For each JSON type, we supply a distinct value constructor. Some of these constructors
have parameters: if we want to construct a JSON string, we must provide a String value
as an argument to the JString constructor.

To start experimenting with this code, save the file Simple]SON. hs in your editor, switch
to a ghci window, and load the file into ghci.

ghci> :load SimpleJSON

[1 of 1] Compiling SimpleJSON ( SimpleJSON.hs, interpreted )
Ok, modules loaded: SimpleJSON.

ghci> JString "foo"

JString "foo"

ghci> INumber 2.7

INumber 2.7

ghci> :type JBool True

JBool True :: JValue

We can see how to use a constructor to take a normal Haskell value and turn it into a
JValue. To do the reverse, we use pattern matching. Here's a function that we can add
to SimpleJ]SON. hs that will extract a string from a JSON value for us. If the JSON value
actually contains a string, our function will wrap the string with the Just constructor.
Otherwise, it will return Nothing.

-- file: cho5/SimpleJSON.hs

getString :: JValue -> Maybe String

getString (JString s) = Just s
getString _ = Nothing

When we save the modified source file, we can reload it in ghci and try the new defi-
nition. (The :reload command remembers the last source file we loaded, so we do not
need to name it explicitly.)

ghci> :reload

Ok, modules loaded: SimpleJSON.

ghci> getString (JString "hello")

Just "hello"

ghci> getString (INumber 3)
Nothing

A few more accessor functions, and we've got a small body of code to work with.

-- file: cho5/SimpleJSON.hs
getInt (INumber n) = Just (truncate n)

getInt _ = Nothing
getDouble (JINumber n) = Just n
getDouble _ = Nothing
getBool (JBool b) = Just b
getBool _ = Nothing
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getObject (JObject o) = Just o

getObject _ = Nothing
getArray (JArray a) = Just a
getArray _ = Nothing
isNull v = v == JNull

The truncate function turns a floating point or rational number into an integer by
dropping the digits after the decimal point.

ghci> truncate 5.8

5

ghci> :module +Data.Ratio
ghci> truncate (22 % 7)

3

The anatomy of a Haskell module

A Haskell source file contains a definition of a single module. A module lets us determine
which names inside the module are accessible from other modules.

A source file begins with a module declaration. This must precede all other definitions
in the source file.

-- file: cho5/SimpleJSON.hs
module SimpleJSON
(
Jvalue(..)
getString
getInt
getDouble
getBool
getObject
getArray
isNull
where

~—e v v v v v

The word module is reserved. It is followed by the name of the module, which must
begin with a capital letter. A source file must have the same base name (the component
before the suffix) as the name of the module it contains. This is why our file Simple]
SON.hs contains a module named SimpleJSON.

Following the module name is a list of exports, enclosed in parentheses. The where
keyword indicates that the body of the module follows.

The list of exports indicates which names in this module are visible to other modules.
This lets us keep private code hidden from the outside world. The special notation
(..) that follows the name JValue indicates that we are exporting both the type and all
of its constructors.
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It might seem strange that we can export a type's name (i.e. its type constructor), but
not its value constructors. The ability to do this is important: it lets us hide the details
of a type from its users, making the type abstract. If we cannot see a type's value con-
structors, we cannot pattern match against a value of that type, nor can we construct
a new value of that type. Later in this chapter, we'll discuss some situations in which
we might want to make a type abstract.

If we omit the exports (and the parentheses that enclose them) from a module decla-
ration, every name in the module will be exported.

-- file: cho5/Exporting.hs
module ExportEverything where

To export no names at all (which is rarely useful), we write an empty export list using
a pair of parentheses.

-- file: cho5/Exporting.hs
module ExportNothing () where

Compiling Haskell source

In addition to the ghci interpreter, the GHC distribution includes a compiler, ghc, that
generates native code. If you are already familiar with a command line compiler such
as gec or ¢l (the C++ compiler component of Microsoft's Visual Studio), you'll imme-
diately be at home with ghc.

To compile a source file, we first open a terminal or command prompt window, then
invoke ghc with the name of the source file to compile.
ghc -c SimpleJSON.hs

The -c option tells ghc to only generate object code. If we were to omit the -c option,
the compiler would attempt to generate a complete executable. That would fail, be-
cause we haven't written a main function, which GHC calls to start the execution of a
standalone program.

After ghc completes, if we list the contents of the directory, it should contain two new
files: Simple]SON.hi and Simple]SON.o. The former is an interface file, in which ghc
stores information about the names exported from our module in machine-readable
form. The latter is an object file, which contains the generated machine code.

Generating a Haskell program, and importing modules

Now that we've successfully compiled our minimal library, we'll write a tiny program
to exercise it. Create the following file in your text editor, and save it as Main.hs.

-- file: chos5/Main.hs
module Main () where

import SimpleJSON
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main = print (JObject [("foo", INumber 1), ("bar", JBool False)])

Notice the import directive that follows the module declaration. This indicates that we
want to take all of the names that are exported from the SimpleJSON module, and make
them available in our module. Any import directives must appear in a group at the
beginning of a module. They must appear after the module declaration, but before all
other code. We cannot, for example, scatter them throughout a source file.

Our choice of naming for the source file and function is deliberate. To create an exe-
cutable, ghc expects a module named Main that contains a function named main. The
main function is the one that will be called when we run the program once we've built it.

ghc -o simple Main.hs SimpleJSON.o

This time around, we're omitting the -c option when we invoke ghc, so it will attempt
to generate an executable. The process of generating an executable is called linking. As
our command line suggests, ghc is perfectly able to both compile source files and link
an executable in a single invocation.

We pass ghc a new option, -0, which takes one argument: this is the name of the exe-
cutable that ghc should create’. Here, we've decided to name the program simple. On
Windows, the program will have the suffix .exe, but on Unix variants there will not be
a suffix.

Finally, we supply the name of our new source file, Main.hs, and the object file we
already compiled, Simple]SON.o. We must explicitly list every one of our files that
contains code that should end up in the executable. If we forget a source or object file,
ghe will complain about undefined symbols, which indicates that some of the definitions
that it needs are not provided in the files we have supplied.

When compiling, we can pass ghc any mixture of source and object files. If ghc notices
that it has already compiled a source file into an object file, it will only recompile the
source file if we've modified it.

Once ghc has finished compiling and linking our simple program, we can run it from
the command line.

Printing JSON data

Now that we have a Haskell representation for JSON's types, we'd like to be able to
take Haskell values and render them as JSON data.

There are a few ways we could go about this. Perhaps the most direct would be to write
a rendering function that prints a value in JSON form. Once we're done, we'll explore
some more interesting approaches.

" Memory aid: -o stands for “output” or “object file”.
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-- file: cho5/PutJSON.hs
module PutJSON where

import Data.lList (intercalate)
import SimpleJSON

renderJValue :: JValue -> String

renderJValue (JString s) = show s
renderJValue (INumber n) = show n
renderJValue (JBool True) = "true"
renderJValue (JBool False) = "false"
renderJValue JINull = "null"
renderJValue (JObject o) = "{" ++ pairs o ++ "}"

where pairs [] =
pairs ps = intercalate
renderPair (k,v) = show k ++

, " (map renderPair ps)
": " ++ renderlValue v

renderJValue (JArray a) = "[" ++ values a ++ "]"
where values [] = ""
values vs = intercalate

, " (map renderJValue vs)

Good Haskell style involves separating pure code from code that performs I/O. Our
renderJValue function has no interaction with the outside world, but we still need to
be able to print a JValue.

-- file: cho5/PutJSON.hs

putJvalue :: Jvalue -> IO ()
putJValue v = putStrLn (renderJValue v)

Printing a JSON value is now easy.

Why should we separate the rendering code from the code that actually prints a value?
This gives us flexibility. For instance, if we wanted to compress the data before writing
it out, and we intermixed rendering with printing, it would be much more difficult to
adapt our code to that change in circumstances.

This idea of separating pure from impure code is powerful, and pervasive in Haskell
code. Several Haskell compression libraries exist, all of which have simple interfaces:
a compression function accepts an uncompressed string and returns a compressed
string. We can use function composition to render JSON data to a string, then compress
to another string, postponing any decision on how to actually display or transmit the
data.

Type inference is a double-edged sword

A Haskell compiler's ability to infer types is powerful and valuable. Early on, you'll
probably be faced by a strong temptation to take advantage of type inference by omit-
ting as many type declarations as possible: let's simply make the compiler figure the
whole lot out!
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Skimping on explicit type information has a downside, one that disproportionately
affects new Haskell programmer. As a new Haskell programmer, we're extremely likely
to write code that will fail to compile due to straightforward type errors.

When we omit explicit type information, we force the compiler to figure out our in-
tentions. It will infer types that are logical and consistent, but perhaps not at all what
we meant. If we and the compiler unknowingly disagree about what is going on, it will
naturally take us longer to find the source of our problem.

Suppose, for instance, that we write a function that we believe returns a String, but we
don't write a type signature for it.

-- file: chos/Trouble.hs
upcaseFirst (c:cs) = toUpper c -- forgot ":cs" here

Here, we want to upper-case the first character of a word, but we've forgotten to append
the rest of the word onto the result. We think our function's type is String -> String,
but the compiler will correctly infer its type as String -> Char. Let's say we then try to
use this function somewhere else.

-- file: chos/Trouble.hs

camelCase :: String -> String
camelCase xs = concat (map upcaseFirst (words xs))

When we try to compile this code or load it into ghci, we won't necessarily get an
obvious error message.

ghci> :load Trouble
[1 of 1] Compiling Main ( Trouble.hs, interpreted )

Trouble.hs:9:27:
Couldn't match expected type “[Char]' against inferred type "Char'
Expected type: [Char] -> [Char]
Inferred type: [Char] -> Char
In the first argument of "map', namely upcaseFirst’
In the first argument of “concat', namely
*(map upcaseFirst (words xs))'
Failed, modules loaded: none.

Notice that the error is reported where we use the upcaseFirst function. If we're erro-
neously convinced that our definition and type for upcaseFirst are correct, we may end
up staring at the wrong piece of code for quite a while, until enlightenment strikes.

Every time we write a type signature, we remove a degree of freedom from the type
inference engine. This reduces the likelihood of divergence between our understanding
of our code and the compiler's. Type declarations also act as shorthand for ourselves
as readers of our own code, making it easier for us to develop a sense of what must be
going on.

This is not to say that we need to pepper every tiny fragment of code with a type
declaration. It is, however, usually good form to add a signature to every top-level
definition in our code. It's best to start out fairly aggressive with explicit type signatures,
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and slowly ease back as your mental model of how type checking works becomes more
accurate.

W

Explicit types, undefined values, and error

[ f\t' The special value undefined will happily typecheck no matter where we
use it, as will an expression like error "argh!". Itis especially important
that we write type signatures when we use these. Suppose we use unde
fined or error "write me" to act as a placeholder in the body of a top-
level definition. If we omit a type signature, we may be able to use the
value we have defined in places where a correctly typed version would
be rejected by the compiler. This can easily lead us astray.

A more general look at rendering

Our JSON rendering code is narrowly tailored to the exact needs of our data types and
the JSON formatting conventions. The output it produces can be unfriendly to human
eyes. We will now look at rendering as a more generic task: how can we build a library
that is useful for rendering data in a variety of situations?

We would like to produce output that is suitable either for human consumption (e.g.
for debugging) or for machine processing. Libraries that perform this job are referred
to as pretty printers. There already exist several Haskell pretty printing libraries. We
are creating one of our own not to replace them, but for the many useful insights we
will gain into both library design and functional programming techniques.

We will call our generic pretty printing module Prettify, so our code will go into a
source file named Prettify.hs.

Naming

L)
064" In our Prettify module, we will base our names on those used by several
established Haskell pretty printing libraries. This will give us a degree
of compatibility with existing mature libraries.

To make sure that Prettify meets practical needs, we write a new JSON renderer that
uses the Prettify API. After we're done, we'll go back and fill in the details of the
Prettify module.

Instead of rendering straight to a string, our Prettify module will use an abstract type
that we'll call Doc. By basing our generic rendering library on an abstract type, we can
choose an implementation that is flexible and efficient. If we decide to change the
underlying code, our users will not be able to tell.
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We will name our new JSON rendering module Pretty]SON.hs, and retain the name
renderJValue for the rendering function. Rendering one of the basic JSON values is
straightforward.

-- file: cho5/PrettyJSON.hs

renderJValue :: JValue -> Doc
renderJValue (JBool True) = text "true"
renderJValue (JBool False) = text "false"
renderJValue JINull = text "null"
renderJValue (INumber num) = double num
renderJValue (JString str) = string str

The text, double, and string functions will be provided by our Prettify module.

Developing Haskell code without going nuts

Early on, as we come to grips with Haskell development, we have so many new, unfa-
miliar concepts to keep track of at one time that it can be a challenge to write code that
compiles at all.

Aswe write our first substantial body of code, it's a huge help to pause every few minutes
and try to compile what we've produced so far. Because Haskell is so strongly typed, if
our code compiles cleanly, we're assuring ourselves that we're not wandering too far
off into the programming weeds.

One useful technique for quickly developing the skeleton of a program is to write pla-
ceholder, or stub versions of types and functions. For instance, we mentioned above
that our string, text and double functions would be provided by our Prettify module.
If we don't provide definitions for those functions or the Doc type, our attempts to
“compile early, compile often” with our JSON renderer will fail, as the compiler won't
know anything about those functions. To avoid this problem, we write stub code that
doesn't do anything.

-- file: chos/PrettyStub.hs
import SimpleJSON

data Doc = ToBeDefined
deriving (Show)

string :: String -> Doc
string str = undefined

text :: String -> Doc
text str = undefined

double :: Double -> Doc
double num = undefined

The special value undefined has the type a, so it always typechecks, no matter where
we use it. If we attempt to evaluate it, it will cause our program to crash.
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ghci> :type undefined

undefined :: a

ghci> undefined

*** Exception: Prelude.undefined
ghci> :type double

double :: Double -> Doc

ghci> double 3.14

*** Exception: Prelude.undefined

Even though we can't yet run our stubbed code, the compiler's type checker will ensure
that our program is sensibly typed.

Pretty printing a string

When we must pretty print a string value, JSON has moderately involved escaping rules
that we must follow. At the highest level, a string is just a series of characters wrapped
in quotes.

-- file: cho5/PrettyJSON.hs

string :: String -> Doc

string = enclose '"" '"' . hcat . map oneChar

Point-free style

[ ‘;‘ This style of writing a definition exclusively as a composition of other
functions is called point-free style. The use of the word “point” is not
related to the “.” character used for function composition. The term
point is roughly synonymous (in Haskell) with value, so a point-free ex-

pression makes no mention of the values that it operates on.

Contrast the point-free definition of string above with this “pointy”
version, which uses a variable s to refer to the value on which it operates.
-- file: chos/PrettyJSON.hs
pointyString :: String -> Doc

pointyString s = enclose '"' '"' (hcat (map oneChar s))

The enclose function simply wraps a Doc value with an opening and closing character.

-- file: cho5/PrettyJSON.hs
enclose :: Char -> Char -> Doc -> Doc
enclose left right x = char left <> x <> char right

We provide a (<>) function in our pretty printing library. It appends two Doc values,
so it's the Doc equivalent of (++).

-- file: cho5/PrettyStub.hs

(¢<>) :: Doc -> Doc -> Doc

a <> b = undefined

char :: Char -> Doc
char ¢ = undefined
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Our pretty printing library also provides hcat, which concatenates multiple Doc values
into one: it's the analogue of concat for lists.
-- file: chos/PrettyStub.hs

hcat :: [Doc] -> Doc
hcat xs = undefined

Our string function applies the oneChar function to every character in a string, con-
catenates the lot, and encloses the result in quotes. The oneChar function escapes or
renders an individual character.
-- file: cho5/PrettyJSON.hs
oneChar :: Char -> Doc
oneChar ¢ = case lookup c simpleEscapes of
Just r -> text r
Nothing | mustEscape c -> hexEscape c
| otherwise -> char ¢
where mustEscape ¢ = ¢ < " ' || ¢ == "\x7f" || ¢ > "\xff'

simpleEscapes :: [(Char, String)]
simpleEscapes = zipWith ch "\b\n\f\r\t\\\"/" "bnfrt\\\"/"
where ch a b = (a, ['\\',b])

The simpleEscapes value is a list of pairs. We call a list of pairs an association list, or
alist for short. Each element of our alist associates a character with its escaped repre-
sentation.

ghci> take 4 simpleEscapes

LCND",™\\B™), (A", "\\n™), CAF, "\NVE), (A, "M\ )]
Our case expression attempts to see if our character has a match in this alist. If we find
the match, we emit it, otherwise we might need to escape the character in a more
complicated way. If so, we perform this escaping. Only if neither kind of escaping is
required do we emit the plain character. To be conservative, the only unescaped char-
acters we emit are printable ASCII characters.

The more complicated escaping involves turning a character into the string “\u” fol-
lowed by a four-character sequence of hexadecimal digits representing the numeric
value of the Unicode character.
-- file: cho5/PrettyJSON.hs
smallHex :: Int -> Doc
smallHex x = text "\\u"
<> text (replicate (4 - length h) '0')
<> text h
where h = showHex x

nn

The showHex function comes from the Numeric library (you will need to import this at
the beginning of Prettify.hs), and returns a hexadecimal representation of a number.

ghci> showHex 114111
"1bdbf"

The replicate function is provided by the Prelude, and builds a fixed-length repeating
list of its argument.
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ghci> replicate 5 "foo"
["_FOOII,|I_F00ll,|lf00ll’|lf00ll,llf00ll]

There's a wrinkle: the four-digit encoding that smallHex provides can only represent
Unicode characters up to oxffff. Valid Unicode characters can range up to ox10ffff.
To properly represent a character above oxffff in a JSON string, we follow some com-
plicated rules to split it into two. This gives us an opportunity to perform some bit-level
manipulation of Haskell numbers.

-- file: cho5/PrettyJSON.hs

astral :: Int -> Doc

astral n = smallHex (a + 0xd800) <> smallHex (b + 0xdc00)

where a = (n “shiftR® 10) .&. ox3ff
b =n .8 ox3ff

The shiftR function comes from the Data.Bits module, and shifts a number to the
right. The (.&.) function, also from Data.Bits, performs a bit-level and of two values.
ghci> 0x10000 “shiftR® 4 :: Int
4096

ghci> 7 .&. 2 :: Int
2

Now that we've written smallHex and astral, we can provide a definition for
hexEscape.

-- file: cho5/PrettyJSON.hs

hexEscape :: Char -> Doc

hexEscape ¢ | d < 0x10000 = smallHex d

| otherwise = astral (d - 0x10000)
where d = ord ¢

Arrays and objects, and the module header

Compared to strings, pretty printing arrays and objects is a snap. We already know
that the two are visually similar: each starts with an opening character, followed by a
series of values separated with commas, followed by a closing character. Let's write a
function that captures the common structure of arrays and objects.

-- file: cho5/PrettyJSON.hs

series :: Char -> Char -> (a -> Doc) -> [a] -> Doc

series open close item = enclose open close

. fsep . punctuate (char ',") . map item

We'll start by interpreting this function's type. It takes an opening and closing character,
then a function that knows how to pretty print a value of some unknown type a, fol-
lowed by a list of values of type a, and it returns a value of type Doc.

Notice that although our type signature mentions four parameters, we have only listed
three in the definition of the function. We are simply following the same rule that lets
us simplify a definiton like myLength xs = length xs to myLength = length.
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We have already written enclose, which wraps a Doc value in opening and closing
characters. The fsep function will live in our Prettify module. It combines a list of
Doc values into one, possibly wrapping lines if the output will not fit on a single line.

-- file: chos/PrettyStub.hs

fsep :: [Doc] -> Doc

fsep xs = undefined

By now, you should be able to define your own stubs in Prettify.hs, by following the
examples we have supplied. We will not explicitly define any more stubs.

The punctuate function will also live in our Prettify module, and we can define it in
terms of functions for which we've already written stubs.

-- file: chos/Prettify.hs

punctuate :: Doc -> [Doc] -> [Doc]

punctuate p [] =[]

punctuate p [d] = [d]

punctuate p (d:ds) = (d <> p) : punctuate p ds

With this definition of series, pretty printing an array is entirely straightforward. We
add this equation to the end of the block we've already written for our renderJvalue
function.

-- file: cho5/PrettyJSON.hs
renderJValue (JArray ary) = series '[' ']' renderlValue ary

To pretty print an object, we need to do only a little more work: for each element, we
have both a name and a value to deal with.

-- file: cho5/PrettyJSON.hs
renderJValue (JObject obj) = series '{' '}' field obj
where field (name,val) = string name
<> text ": "
<> renderJValue val

Writing a module header

Now that we have written the bulk of our PrettyJ]SON.hs file, we must go back to the
top and add a module declaration.

-- file: cho5/PrettyJSON.hs
module PrettyJSON

renderJlValue
) where

import Numeric (showHex)
import Data.Char (ord)
import Data.Bits (shiftR, (.&.))

import SimpleJSON (JValue(..))
import Prettify (Doc, (<>), char, double, fsep, hcat, punctuate, text,
compact, pretty)
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We export just one name from this module: renderJvalue, our JSON rendering func-
tion. The other definitions in the module exist purely to support renderJValue, so there's
no reason to make them visible to other modules.

Regarding imports, the Numeric and Data.Bits modules are distributed with GHC.
We've already written the SimpleJSON module, and filled our Prettify module with
skeletal definitions. Notice that there's no difference in the way we import standard
modules from those we've written ourselves.

With each import directive, we explicitly list each of the names we want to bring into
our module's namespace. This is not required: if we omit the list of names, all of the
names exported from a module will be available to us. However, it's generally a good
idea to write an explicit import list.

* An explicit list makes it clear which names we're importing from where. This will
make it easier for a reader to look up documentation if they encounter an unfamiliar
function.

* Occasionally, a library maintainer will remove or rename a function. If a function
disappears from a third party module that we use, any resulting compilation error
is likely to happen long after we've written the module. The explicit list of imported
names can act as a reminder to ourselves of where we had been importing the
missing name from, which will help us to pinpoint the problem more quickly.

* It can also occur that someone will add a name to a module that is identical to a
name already in our own code. If we don't use an explicit import list, we'll end up
with the same name in our module twice. If we use that name, GHC will report an
error due to the ambiguity. An explicit list lets us avoid the possibility of acciden-
tally importing an unexpected new name.

This idea of using explicit imports is a guideline that usually makes sense, not a hard-
and-fast rule. Occasionally, we'll need so many names from a module that listing each
one becomes messy. In other cases, a module might be so widely used that a moderately
experienced Haskell programmer will probably know which names come from that
module.

Fleshing out the pretty printing library

In our Prettify module, we represent our Doc type as an algebraic data type.

-- file: chos/Prettify.hs
data Doc = Empty

| Char Char

| Text String

| Line

| Concat Doc Doc

| Union Doc Doc
deriving (Show,Eq)
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Observe that the Doc type is actually a tree. The Concat and Union constructors create
an internal node from two other Doc values, while the Empty and other simple con-
structors build leaves.

In the header of our module, we will export the name of the type, but not any of its
constructors: this will prevent modules that use the Doc type from creating and pattern
matching against Doc values.

Instead, to create a Doc, a user of the Prettify module will call a function that we
provide. Here are the simple construction functions. As we add real definitions, we
must replace any stubbed versions already in the Prettify.hs source file.

-- file: chos/Prettify.hs

empty :: Doc

empty = Empty

char :: Char -> Doc
char ¢ = Char c

text :: String -> Doc
text "" = Empty
text s = Text s

double :: Double -> Doc
double d = text (show d)

The Line constructor represents a line break. The line function creates hard line breaks,
which always appear in the pretty printer's output. Sometimes we'll want a soft line
break, which is only used if a line is too wide to fit in a window or page. We'll introduce
a softline function shortly.

-- file: chos/Prettify.hs

line :: Doc

line = Line

Almost as simple as the basic constructors is the (<>) function, which concatenates two
Doc values.

-- file: chos/Prettify.hs
(¢<>) :: Doc -> Doc -> Doc
Empty <>y =y

X <> Empty = x

X <>y = x “Concat™ y

We pattern match against Empty so that concatenating a Doc value with Empty on the
left or right will have no effect. This keeps us from bloating the tree with useless values.

ghci> text "foo" <> text "bar"
Concat (Text "foo") (Text "bar")
ghci> text "foo" <> empty

Text "foo"

ghci> empty <> text "bar"

Text "bar"
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A mathematical moment

[ f\t' If we briefly put on our mathematical hats, we can say that Empty is the
identity under concatenation, since nothing happens if we concatenate
a Doc value with Empty. In a similar vein, 0 is the identity for adding
numbers, and 1 is the identity for multiplying them. Taking the math-
ematical perspective has useful practical consequences, as we will see in
a number of places throughout this book.

Our hcat and fsep functions concatenate a list of Doc values into one. In “Exercises,
we mentioned that we could define concatenation for lists using foldr.

-- file: chos/Concat.hs

concat :: [[a]] -> [a]

concat = foldr (++) []
Since (<>) is analogous to (++), and empty to [], we can see how we might write hcat
and fsep as folds, too.

-- file: chos/Prettify.hs

hcat :: [Doc] -> Doc
hcat = fold (<>)

fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty

The definition of fsep depends on several other functions.

-- file: chos/Prettify.hs
fsep :: [Doc] -> Doc
fsep = fold (</>)

(</>) :: Doc -> Doc -> Doc
X </>y = x <> softline <>y

softline :: Doc
softline = group line

These take a little explaining. The softline function should insert a newline if the
current line has become too wide, or a space otherwise. How can we do this if our
Doc type doesn't contain any information about rendering? Our answer is that every
time we encounter a soft newline, we maintain two alternative representations of the
document, using the Union constructor.

-- file: chos/Prettify.hs

group :: Doc -> Doc

group x = flatten x “Union™ x

Our flatten function replaces a Line with a space, turning two lines into one longer line.

-- file: chos/Prettify.hs
flatten :: Doc -> Doc
flatten (x ‘Concat® y) = flatten x “Concat® flatten y
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flatten Line Char ' '
flatten (x “Union® _) = flatten x
flatten other other

Notice that we always call flatten on the left element of a Union: the left of each
Union is always the same width (in characters) as, or wider than, the right. We'll be
making use of this property in our rendering functions below.

Compact rendering

We frequently need to use a representation for a piece of data that contains as few
characters as possible. For example, if we're sending JSON data over a network con-
nection, there's no sense in laying it out nicely: the software on the far end won't care
whether the data is pretty or not, and the added white space needed to make the layout
look good would add a lot of overhead.

For these cases, and because it's a simple piece of code to start with, we provide a bare-
bones compact rendering function.

-- file: chos/Prettify.hs
compact :: Doc -> String
compact x = transform [x]
where transform [] =
transform (d:ds) =

case d of
Empty -> transform ds
Char ¢ -> ¢ : transform ds
Text s -> s ++ transform ds
Line -> "\n' : transform ds

a ‘Concat’ b -> transform (a:b:ds)
_ “Union® b -> transform (b:ds)

The compact function wraps its argument in a list, and applies the transform helper
function to it. The transform function treats its argument as a stack of items to process,
where the first element of the list is the top of the stack.

The transform function's (d:ds) pattern breaks the stack into its head, d, and the re-
mainder, ds. In our case expression, the first several branches recurse on ds, consuming
one item from the stack for each recursive application. The last two branches add items
in front of ds: the Concat branch adds both elements to the stack, while the Union branch
ignores its left element, on which we called flatten, and adds its right element to the
stack.

We have now fleshed out enough of our original skeletal definitions that we can try out
our compact function in ghci.

ghci> let value = renderJValue (JObject [("f", INumber 1), ("q", JBool True)])
ghci> :type value

value :: Doc

ghci> putStrLn (compact value)

{"f": 1.0,
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q": true
}

To better understand how the code works, let's look at a simpler example in more detail.

ghci> char 'f' <> text "oo"

Concat (Char 'f') (Text "oo"

ghci> compact (char 'f' <> text "oo"
"foo"

When we apply compact, it turns its argument into a list and applies transform.

* The transform function receives a one-item list, which matches the (d:ds) pattern.
Thus d is the value Concat (Char 'f') (Text "oo"), and ds is the empty list, [].

Since d's constructor is Concat, the Concat pattern matches in the case expression.
On the right hand side, we add Char 'f' and Text "o0o" to the stack, and apply
transformrecursively.

* —The transform function receives a two-item list, again matching the (d:ds) pat-
tern. The variable d is bound to Char 'f', and ds to [Text "o0o0"].

The case expression matches in the Char branch. On the right hand side, we use
(:) to construct a list whose head is 'f', and whose body is the result of a
recursive application of transform.

——The recursive invocation receives a one-item list. The variable d is bound to
Text "oo",and ds to [].

The case expression matches in the Text branch. On the right hand side, we
use (++) to concatenate "00" with the result of a recursive application of
transform.

— —Inthefinal invocation, transformis invoked with an empty list, and returns
an empty string.

—The result is "oo0" ++

—Theresultis 'f' : "oo" ++

True pretty printing

While our compact function is useful for machine-to-machine communication, its result
is not always easy for a human to follow: there's very little information on each line.
To generate more readable output, we'll write another function, pretty. Compared to
compact, pretty takes one extra argument: the maximum width of a line, in columns.
(We're assuming that our typeface is of fixed width.)

-- file: chos/Prettify.hs

pretty :: Int -> Doc -> String
To be more precise, this Int parameter controls the behaviour of pretty when it en-
counters a softline. Only at a softline does pretty have the option of either continuing
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the current line or beginning a new line. Elsewhere, we must strictly follow the directives
set out by the person using our pretty printing functions.

Here's the core of our implementation

-- file: chos/Prettify.hs
pretty width x = best 0 [x]
where best col (d:ds) =

case d of
Empty -> best col ds
Char ¢ -> ¢ : best (col + 1) ds
Text s -> s ++ best (col + length s) ds
Line -> "\n' : best 0 ds

a “Concat’ b -> best col (a:b:ds)
a ‘Union” b -> nicest col (best col (a:ds))
(best col (b:ds))
best = ""

nicest col a b | (width - least) “fits' a
| otherwise =b
where least = min width col

n
Q

Our best helper function takes two arguments: the number of columns emitted so far
on the current line, and the list of remaining Doc values to process.

In the simple cases, best updates the col variable in straightforward ways as it consumes
the input. Even the Concat case is obvious: we push the two concatenated components
onto our stack/list, and don't touch col.

The interesting case involves the Union constructor. Recall that we applied flatten to
the left element, and did nothing to the right. Also, remember that flatten replaces
newlines with spaces. Therefore, our job is to see which (if either) of the two layouts,
the flattened one or the original, will fit into our width restriction.

To do this, we write a small helper that determines whether a single line of a rendered
Doc value will fit into a given number of columns.

-- file: chos/Prettify.hs
fits :: Int -> String -> Bool

w “fits® | w < 0 = False
w S fits® " = True
w “fits® ("\n':) = True
w “fits® (c:cs) = (w - 1) “fits® cs

Following the pretty printer

In order to understand how this code works, let's first consider a simple Doc value.

ghci> empty </> char 'a’
Concat (Union (Char ' ') Line) (Char 'a')

We'll apply pretty 2 on this value. When we first apply best, the value of col is zero.
[t matches the Concat case, pushes the values Union (Char ' ') Line and Char 'a' onto
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the stack, and applies itself recursively. In the recursive application, it matches on Union
(Char ' ') Line.

At this point, we're going to ignore Haskell's usual order of evaluation. This keeps our
explanation of what's going on simple, without changing the end result. We now have
two subexpressions, best 0 [Char ' ', Char 'a'] and best 0 [Line, Char 'a']. The
first evaluates to " a", and the second to "\na". We then substitute these into the outer
expression to give nicest 0 " a" "\na".

To figure out what the result of nicest is here, we do a little substitution. The values
of width and col are 0 and 2, respectively, so least is 0, and width - leastis 2. We
quickly evaluate 2 “fits® " a" in ghci.

ghci> 2 “fits® " a"

True

Since this evaluates to True, the result of nicest hereis " a".

If we apply our pretty function to the same JSON data as earlier, we can see that it
produces different output depending on the width that we give it.

ghci> putStrLn (pretty 10 value)
{"f": 1.0,

q": true

ghci> putStrLn (pretty 20 value)
{"f": 1.0, "q": true

ghci> putStrLn (pretty 30 value)
{"f": 1.0, "q": true }

Exercises

Our current pretty printer is spartan, so that it will fit within our space constraints, but
there are a number of useful improvements we can make.

1. Write a function, fill, with the following type signature.
-- file: chos/Prettify.hs
fill :: Int -> Doc -> Doc

It should add spaces to a document until it is the given number of columns wide.
If it is already wider than this value, it should add no spaces.

2. Our pretty printer does not take nesting into account. Whenever we open pa-
rentheses, braces, or brackets, any lines that follow should be indented so that
they are aligned with the opening character until a matching closing character is
encountered.

Add support for nesting, with a controllable amount of indentation.

-- file: chos/Prettify.hs
nest :: Int -> Doc -> Doc
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Creating a package

The Haskell community has built a standard set of tools, named Cabal, that help with
building, installing, and distributing software. Cabal organises software as a package.
A package contains one library, and possibly several executable programs.

Writing a package description

To do anything with a package, Cabal needs a description of it. This is contained in a
text file whose name ends with the suffix .cabal. This file belongs in the top-level di-
rectory of your project. It has a simple format, which we'll describe below.

A Cabal package must have a name. Usually, the name of the package matches the
name of the .cabal file. We'll call our package mypretty, so our file is mypretty.cabal.
Often, the directory that contains a .cabal file will have the same name as the package,
e.g. mypretty.

A package description begins with a series of global properties, which apply to every
library and executable in the package.

Name: mypretty
Version: 0.1

-- This is a comment. It stretches to the end of the line.

Package names must be unique. If you create and install a package that has the same
name as a package already present on your system, GHC will become very confused.

The global properties include a substantial amount of information that is intended for
human readers, not Cabal itself.
Synopsis: My pretty printing library, with JSON support
Description:
A simple pretty printing library that illustrates how to
develop a Haskell library.
Author: Real World Haskell
Maintainer: nobody@realworldhaskell.org

As the Description field indicates, a field can span multiple lines, provided they're
indented.

Also included in the global properties is license information. Most Haskell packages
are licensed under the BSD license, which Cabal calls BSD3T. (Obviously, you're free to
choose whatever license you think is appropriate.) The optional License-File field lets
us specify the name of a file that contains the exact text of our package's licensing terms.

T The “3” in BSD3 refers to the number of clauses in the license. An older version of the BSD license contained
4 clauses, but it is no longer used.
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The features supported by successive versions of Cabal evolve over time, so it's wise to
indicate what versions of Cabal we expect to be compatible with. The features we are
describing are supported by versions 1.2 and higher of Cabal.

Cabal-Version: >= 1.2

To describe an individual library within a package, we write a library section. The use
of indentation here is significant: the contents of a section must be indented.

library
Exposed-Modules: Prettify
PrettyJSON
SimpleJSON

Build-Depends: base >= 2.0

The Exposed-Modules field contains a list of modules that should be available to users
of this package. An optional field, Other-Modules, contains a list of internal modules.
These are required for this library to function, but will not be visible to users.

The Build-Depends field contains a comma-separated list of packages that our library
requires to build. For each package, we can optionally specify the range of versions
with which this library is known to work. The base package contains many of the core
Haskell modules, such as the Prelude, so it's effectively always required.

Figuring out build dependencies

We don't have to guess or do any research to establish which packages
we depend on. If we try to build our package without a Build-Depends
field, compilation will fail with a useful error message. Here's an exam-
ple where we commented out the dependency on the base package.

$ runghc Setup build

Preprocessing library mypretty-o0.1...
Building mypretty-o0.1...

PrettyJSON.hs:8:7:
Could not find module “Data.Bits':
it is a member of package base, which is hidden

The error message makes it clear that we need to add the base package,
even though base is already installed. Forcing us to be explicit about
every package we need has a practical benefit: a command line tool
named cabal-install will automatically download, build, and install a
package and all of the packages it depends on.

GHC's package manager

GHC includes a simple package manager that tracks which packages are installed, and
what the versions of those packages are. A command line tool named ghc-pkg lets us
work with its package databases.
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We say databases because GHC distinguishes between system-wide packages, which
are available to every user, and per-user packages, which are only visible to the current
user. The per-user database lets us avoid the need for administrative privileges to install
packages.

The ghc-pkg command provides subcommands to address different tasks. Most of the
time, we'll only need two of them. The ghc-pkg 1ist command lets us see what packages
are installed. When we want to uninstall a package, ghc-pkg unregister tells GHC that
we won't be using a particular package any longer. (We will have to manually delete
the installed files ourselves.)

Setting up, building, and installing

In addition to a .cabal file, a package must contain a setup file. This allows Cabal's build

process to be heavily customised, if a package needs it. The simplest setup file looks
like this.

-- file: cho5/Setup.hs
#!/usr/bin/env runhaskell
import Distribution.Simple
main = defaultMain

We save this file under the name Setup.hs.
Once we have the .cabal and Setup.hs files written, we have three steps left.

To instruct Cabal how to build and where to install a package, we run a simple com-
mand.
$ runghc Setup configure

This ensures that the packages we need are available, and stores settings to be used
later by other Cabal commands.

If we do not provide any arguments to configure, Cabal will install our package in the
system-wide package database. To install it into our home directory and our personal
package database, we must provide a little more information.

$ runghc Setup configure --prefix=$HOME --user

Following the configure step, we build the package.
$ runghc Setup build
If this succeeds, we can install the package. We don't need to indicate where to install

to: Cabal will use the settings we provided in the configure step. It will install to our
own directory and update GHC's per-user package database.

$ runghc Setup install
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Practical pointers and further reading

GHC already bundles a pretty printing library, Text.PrettyPrint.HughesPJ. It provides
the same basic API as our example, but a much richer and more useful set of pretty
printing functions. We recommend using it, rather than writing your own.

The design of the HughesP] pretty printer was introduced by John Hughes in
Hughes95. The library was subsequently improved by Simon Peyton Jones, hence the
name. Hughes's paper is long, but well worth reading for his discussion of how to design
a library in Haskell.

In this chapter, our pretty printing library is based on a simpler system described by
Philip Wadler in Wadler98. His library was extended by Daan Leijen; this version is
available for download from Hackage as wi-pprint. If you use the cabal command line
tool, you can download, build, and install it in one step with cabal install wi-pprint.
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CHAPTER 6
Using Typeclasses

Typeclasses are among the most powerful features in Haskell. They allow you to define
generic interfaces that provide a common feature set over a wide variety of types. Type-
classes are at the heart of some basic language features such as equality testing and
numeric operators. Before we talk about what exactly typeclasses are, though, we'd like
to explain the need for them.

The need for typeclasses

Let's imagine that for some unfathomable reason, the designers of the Haskell language
neglected to implement the equality test ==. Once you got over your shock at hearing
this, you resolved to implement your own equality tests. Your application consisted of
a simple Color type, and so your first equality test is for this type. Your first attempt
might look like this:

-- file: cho6/naiveeq.hs
data Color = Red | Green | Blue

colorEq :: Color -> Color -> Bool
colorEq Red Red = True
colorEq Green Green = True
colorEq Blue Blue = True
colorEq _ _ = False

You can test this with ghci:

ghci> :load naiveeq.hs

[1 of 1] Compiling Main ( naiveeq.hs, interpreted )
Ok, modules loaded: Main.

ghci> colorEq Red Red

True

ghci> colorEq Red Green

False

Now, let's say that you want to add an equality test for Strings. Since a Haskell
String is a list of characters, we can write a simple function to perform that test. For
simplicity, we cheat a bit and use the == operator here to illustrate.
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-- file: cho6/naiveeq.hs
stringEq :: [Char] -> [Char] -> Bool

-- Match if both are empty
stringkq [] [] = True

-- If both start with the same char, check the rest
stringEq (x:xs) (y:ys) = x ==y &3 stringEq xs ys

-- Everything else doesn't match
stringkq _ _ = False

You should now be able to see a problem: we have to use a function with a different
name for every different type that we want to be able to compare. That's inefficient and
annoying. It's much more convenient to be able to just use == to compare anything. It
may also be useful to write generic functions such as /= that could be implemented in
terms of ==, and valid for almost anything. By having a generic function that can com-
pare anything, we can also make our code generic: if a piece of code only needs to
compare things, then it ought to be able to accept any data type that the compiler knows
how to compare. And, what's more, if new data types are added later, the existing code
shouldn't have to be modified.

Haskell's typeclasses are designed to address all of these things.

What are typeclasses?

Typeclasses define a set of functions that can have different implementations depending
on the type of data they are given. Typeclasses may look like the objects of object-
oriented programming, but they are truly quite different.

Let's use typeclasses to solve our equality dilemma from earlier in the chapter. To begin
with, we must define the typeclass itself. We want a function that takes two parameters,
both the same type, and returns a Bool indicating whether or not they are equal. We
don't care what that type is, but we just want two items of that type. Here's our first
definition of a typeclass:

-- file: cho6/eqclasses.hs

class BasicEq a where

isEqual :: a -> a -> Bool

This says that we are declaring a typeclass named BasicEq, and we'll refer to instance
types with the letter a. An instance type of this typeclass is any type that implements
the functions defined in the typeclass. This typeclass defines one function. That func-
tion takes two parameters—both corresponding to instance types—and returns a Bool.
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Whenis a class not a class?

N
065" The keywoard to define a typeclass in Haskell is class. Unfortunately,
this may be confusing for those of you coming from an object-oriented
background, as we are not really defining the same thing.

On the first line, the name of the parameter a was chosen arbitrarily. We could have
used any name. The key is that, when you list the types of your functions, you must
use that name to refer to instance types.

Let's look at this in ghci. Recall that you can type :type in ghci to have it show you the
type of something. Let's see what it says about isEqual:

*Main> :type isEqual
iskEqual :: (BasicEq a) => a -> a -> Bool

You can read that this way: "For all types a, so long as a is an instance of BasicEq,
isEqual takes two parameters of type a and returns a Bool". Let's take a quick look at
defining isEqual for a particular type.

-- file: cho6/eqclasses.hs

instance BasicEq Bool where
isEqual True True = True
isEqual False False = True
iskqual _ = False

You can also use ghci to verify that we can now use isEqual on Bools, but not on any
other type:

ghci> :load eqclasses.hs

[1 of 1] Compiling Main ( eqclasses.hs, interpreted )
Ok, modules loaded: Main.

ghci> isEqual False False

True

ghci> isEqual False True

False

ghci> isEqual "Hi" "Hi"

<interactive>:1:0:
No instance for (BasicEq [Char])
arising from a use of “isEqual' at <interactive>:1:0-16
Possible fix: add an instance declaration for (BasicEq [Char])
In the expression: isEqual "Hi" "Hi"
In the definition of “it': it = isEqual "Hi" "Hi"

Notice that when we tried to compare two strings, ghci noticed that we hadn't provided
an instance of BasicEq for String. It therefore didn't know how to compare a String,

and suggested that we could fix the problem by defining an instance of BasicEq for
[Char], which is the same as String.
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We'll go into more detail on defining instances in “Declaring typeclass instances. First,
though, let's continue to look at ways to define typeclasses. In this example, a not-equal-
to function might be useful. Here's what we might say to define a typeclass with two
functions:
-- file: cho6/eqclasses.hs
class BasicEq2 a where
isEqual2 tta->a ->Bool
isNotEqual2 :: a -> a -> Bool

Someone providing an instance of BasicEq2 will be required to define two functions:
isEqual2 and isNotEqual2.

While our definition of BasicEq2 is fine, it seems that we're making extra work for
ourselves. Logically speaking, if we know what isEqual or isNotEqual would return,
we know how to figure out what the other function would return, for all types. Rather
than making users of the typeclass define both functions for all types, we can provide
default implementations for them. Then, users will only have to implement one func-
tion. " Here's an example that shows how to do this.
-- file: cho6/eqclasses.hs
class BasicEq3 a where
isEqual3 :: a -> a -> Bool
isEqual3 x y = not (isNotEqual3 x y)

isNotEqual3 :: a -> a -> Bool
isNotEqual3 x y = not (isEqual3 x y)

People implementing this class must provide an implementation of at least one func-
tion. They can implement both if they wish, but they will not be required to. While we
did provide defaults for both functions, each function depends on the presence of the
other to calculate an answer. If we don't specify at least one, the resulting code would
be an endless loop. Therefore, at least one function must always be implemented.

With BasicEq3, we have provided a class that does very much the same thing as Haskell's
built-in == and /= operators. In fact, these operators are defined by a typeclass that looks
almostidentical to BasicEq3. The Haskell 98 Report defines a typeclass that implements
equality comparison. Here is the code for the built-in Eq typeclass. Note how similar it
is to our BasicEq3 typeclass.

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
- (==) or (/=)
x /=y = not (x ==y)

" We provided a default implementation of both functions, which gives implementers of instances choice:
they can pick which one they implement. We could have provided a default for only one function, which
would have forced users to implement the other every time. As it is, users can implement one or both, as they
see fit.
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X == = not (x /=y)

Declaring typeclass instances

Now that you know how to define typeclasses, it's time to learn how to define instances
of typeclasses. Recall that types are made instances of a particular typeclass by imple-
menting the functions necessary for that typeclass.

Recall our attempt to create a test for equality over a Color type back in “The need for
typeclasses. Now let's see how we could make that same Color type a member of the
BasicEq3 class.
-- file: cho6/eqclasses.hs
instance BasicEq3 Color where
isEqual3 Red Red = True
isEqual3 Green Green = True
iskEqual3 Blue Blue = True
isEqual3 _ _ = False

Notice that we provide essentially the same function as we used back in “The need for
typeclasses. In fact, the implementation is identical. However, in this case, we can use
isEqual3 on any type that we declare is an instance of BasicEq3, not just this one color
type. We could define equality tests for anything from numbers to graphics using the
same basic pattern. In fact, as you will see in “Equality, Ordering, and Comparisons,
this is exactly how you can make Haskell's == operator work for your own custom types.

Note also that the BasicEqg3 class defined both isEqual3 and isNotEqual3, but we im-
plemented only one of them in the Color instance. That's because of the default imple-
mentation contained in BasicEq3. Since we didn't explicitly define isNotEqual3, the
compiler automatically uses the default implementation given in the BasicEq3 declara-
tion.

Important Built-In Typeclasses

Now that we've discussed defining your own typeclasses and making your types in-
stances of typeclasses, it's time to introduce you to typeclasses that are a standard part
of the Haskell Prelude. As we mentioned at the beginning of this chapter, typeclasses
are at the core of some important aspects of the language. We'll cover the most common
ones here. For more details, the Haskell library reference is a good resource. It will give
you a description of the typeclasses, and usually also will tell you which functions you
must implement to have a complete definition.

Show

The Show typeclass is used to convert values to Strings. It is perhaps most commonly
used to convert numbers to Strings, but it is defined for so many types that it can be
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used to convert quite a bit more. If you have defined your own types, making them
instances of Show will make it easy to display them in ghci or print them out in programs.

The most important function of Show is show. It takes one argument: the data to convert.
It returns a String representing that data. ghci reports the type of show like this:

ghci> :type show
show :: (Show a) => a -> String

Let's look at some examples of converting values to strings:

ghci> show 1

wy

ghci> show [1, 2, 3]
"[1,2,3]"

ghci> show (1, 2)
"(1,2)"

Remember that ghci displays results as they would be entered into a Haskell program.
So the expression show 1 returns a single-character string containing the digit 1. That
is, the quotes are not part of the string itself. We can make that clear by using putStrLn:

ghci> putStrLn (show 1)

1

ghci> putStrLn (show [1,2,3])
[1,2,3]

You can also use show on Strings:

ghci> show "Hello!"
"\"Hello!\""

ghci> putStrLn (show "Hello!")
"Hello!"

ghci> show ['H', 'i']

Il\llHi\ll "

ghci> putStrLn (show "Hi")
i

ghci> show "Hi, \"Jane\
"\"HE, \\\"Jane\\\"\""
ghci> putStrLn (show "Hi, \"Jane\"")
"Hi, \"Jane\""

Running show on Strings can be confusing. Since show generates a result that is suitable
for a Haskell literal, show adds quotes and escaping suitable for inclusion in a Haskell
program. ghci also uses show to display results, so quotes and escaping get added twice.
Using putStrlLn can help make this difference clear.

You can define a Show instance for your own types easily. Here's an example:

-- file: cho6/eqclasses.hs
instance Show Color where

show Red = "Red"
show Green = "Green"
show Blue = "Blue"
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This example defines an instance of Show for our type Color (see “The need for type-
classes). The implementation is simple: we define a function show and that's all that's
needed.

W

The Show typeclass

[ f\t' Show is usually used to define a String representation for data that is
useful for a machine to parse back with Read. Haskell programmers
generally write custom functions to format data in pretty ways for dis-
playing to end users, if this representation would be different than ex-
pected via Show.

Read

The Read typeclass is essentially the opposite of Show: it defines functions that will take
a String, parse it, and return data in any type that is a member of Read. The most useful
function in Read is read. You can ask ghci for its type like this:

ghci> :type read
read :: (Read a) => String -> a

Here's an example illustrating the use of read and show:

-- file: cho6/read.hs
main = do
putStrLn "Please enter a Double:"
inpStr <- getline
let inpDouble = (read inpStr)::Double
putStrLn ("Twice "

++ show inpDouble ++ " is " ++ show (inpDouble * 2))

This is a simple example of read and show together. Notice that we gave an explicit type
of Double when processing the read. That's because read returns a value of type Read a
=> a and show expects a value of type Show a => a. There are many types that have
instances defined for both Read and Show. Without knowing a specific type, the compiler
must guess from these many types which one is needed. In situations like this, it may
often choose Integer. If we wanted to accept floating-point input, this wouldn't work,
so we provided an explicit type.

W N

Anoteabout defaulting

"% In most cases, if the explicit Double type annotation were omitted, the
compiler would refuse to guess a common type and simply give an error.
The fact that it could default to Integer here is a special case arising
from the fact that the literal 2 is treated as an Integer unless a different
type of expected for it.
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You can see the same effect at work if you try to use read on the ghci command line.
ghci internally uses show to display results, meaning that you can hit this ambiguous
typing problem there as well. You'll need to explicitly give types for your read results
in ghci as shown here:

ghci> read "5"

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
"Read a' arising from a use of “read' at <interactive>:1:0-7
Probable fix: add a type signature that fixes these type variable(s)
ghci> :type (read "5")
(read "5") :: (Read a) => a
ghci> (read "5")::Integer
5
ghci> (read "5")::Double
5.0

Recall the type of read: (Read a) => String -> a. The a here is the type of each instance
of Read. Which particular parsing function is called depends upon the type that is ex-
pected from the return value of read. Let's see how that works:

ghci> (read "5.0")::Double

5.0

ghci> (read "5.0")::Integer

*** Exception: Prelude.read: no parse

Notice the error when trying to parse 5.0 as an Integer. The interpreter selected a
different instance of Read when the return value was expected to be Integer than it did
when a Double was expected. The Integer parser doesn't accept decimal points, and
caused an exception to be raised.

The Read class provides for some fairly complicated parsers. You can define a simple
parser by providing an implementation for the readsPrec function. Your implementa-
tion can return a list containing exactly one tuple on a successful parse, or an empty
list on an unsuccessful parse. Here's an example implementation:

-- file: cho6/eqclasses.hs
instance Read Color where
-- readsPrec is the main function for parsing input
readsPrec _ value =
-- We pass tryParse a list of pairs. Each pair has a string
-- and the desired return value. tryParse will try to match
-- the input to one of these strings.
tryParse [("Red", Red), ("Green", Green), ("Blue", Blue)]
where tryParse [] = [] -- If there is nothing left to try, fail
tryParse ((attempt, result):xs) =
-- Compare the start of the string to be parsed to the
-- text we are looking for.
if (take (length attempt) value) == attempt
-- If we have a match, return the result and the
-- remaining input
then [(result, drop (length attempt) value)]
-- If we don't have a match, try the next pair
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-- in the list of attempts.
else tryParse xs

This example handles the known cases for the three colors. It returns an empty list
(resulting in a "no parse" message) for others. The function is supposed to return the
part of the input that was not parsed, so that the system can integrate the parsing of
different types together. Here's an example of using this new instance of Read:

ghci> (read "Red")::Color

Red

ghci> (read "Green")::Color

Green

ghci> (read "Blue")::Color

Blue

ghci> (read "[Red]")::[Color]

[Red]

ghci> (read "[Red,Red,Blue]")::[Color]

[Red,Red,Blue]

ghci> (read "[Red, Red, Blue]")::[Color]

*** Exception: Prelude.read: no parse

Notice the error on the final attempt. That's because our parser is not smart enough to
handle leading spaces yet. If we modified it to accept leading spaces, that attempt would
work. You could rectify this by modifying your Read instance to discard any leading
spaces, which is common practice in Haskell programs.

W8
)

Readis not widely used

N
06" While it is possible to build sophisticated parsers using the Read type-
class, many people find it easier to do so using Parsec, and rely on
Read only for simpler tasks. Parsec is covered in detail in Chapter 16.

Serialization with Read and Show

You may often have a data structure in memory that you need to store on disk for later
retrieval or to send across the network. The process of converting data in memory to a
flat series of bits for storage is called serialization.

It turns out that read and show make excellent tools for serialization. show produces
output that is both human-readable and machine-readable. Most show output is also
syntactically-valid Haskell, though it is up to people that write Show instances to make
it so.
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Parsing large strings

[ f\i' String handling in Haskell is normally lazy, so read and show can be used
on quite large data structures without incident. The built-in read and
show instances in Haskell are efficient and implemented in pure Haskell.
For information on how to handle parsing exceptions, refer to Chap-
ter 19.

Let's try it out in ghci:

ghci> let d1 = [Just 5, Nothing, Nothing, Just 8, Just 9]::[Maybe Int]
ghci> putStrLn (show d1)

[Just 5,Nothing,Nothing,Just 8,Just 9]

ghci> writeFile "test" (show d1)

First, we assign d1 to be a list. Next, we print out the result of show d1 so we can see
what it generates. Then, we write the result of show d1 to a file named test.

Let's try reading it back.

ghci> input <- readFile "test"
"[Just 5,Nothing,Nothing,Just 8,Just 9]"
ghci> let d2 = read input

<interactive>:1:9:
Ambiguous type variable “a' in the constraint:
“Read a' arising from a use of "read' at <interactive>:1:9-18
Probable fix: add a type signature that fixes these type variable(s)
ghci> let d2 = (read input)::[Maybe Int]
ghci> print di
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> print d2
[Just 5,Nothing,Nothing,Just 8,Just 9]
ghci> d1 == d2
True

First, we ask Haskell to read the file back.T Then, we try to assign the result of read
input to d2. That generates an error. The reason is that the interpreter doesn't know
what type d2 is meant to be, so it doesn't know how to parse the input. If we give it an
explicit type, it works, and we can verify that the two sets of data are equal.

Since so many different types are instances of Read and Show by default (and others can
be made instances easily; see “Automatic Derivation), you can use it for some really
complex data structures. Here are a few examples of slightly more complex data struc-
tures:

ghci> putStrLn $ show [("hi", 1), ("there", 3)]

[("hi",1),("there",3)]
ghci> putStrLn $ show [[1, 2, 3], [], [4, 0, 1], [], [503]]

T As you will see in “Lazy I/O, Haskell doesn't actually read the entire file at this point. But for the purposes
of this example, we can ignore that distinction.
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([1,2,31,[1,[4,0,1],[],[503]]

ghci> putStrLn $ show [Left 5, Right "three", Left 0, Right "nine"
[Left 5,Right "three",Left 0,Right "nine"]

ghci> putStrLn $ show [Left o0, Right [1, 2, 3], Left 5, Right []]
[Left o,Right [1,2,3],Left 5,Right []]

Numeric Types

Haskell has a powerful set of numeric types. You can use everything from fast 32-bit
or 64-bit integers to arbitrary-precision rational numbers. You probably know that
operators such as + can work with just about all of these. This feature is implemented
using typeclasses. As a side benetfit, it allows you to define your own numeric types and
make them first-class citizens in Haskell.

Let's begin our discussion of the typeclasses surrounding numeric types with an ex-
amination of the types themselves. Table 6-1 describes the most commonly-used nu-
meric types in Haskell. Note that there are also many more numeric types available for
specific purposes such as interfacing to C.

Table 6-1. Selected Numeric Types

Type Description

Double Double-precision floating point. A common choice for floating-point data.

Float Single-precision floating point. Often used when interfacing with C.

Int Fixed-precision signed integer; minimum range [-2/29..2A29-1]. Commonly used.
Int8 8-bit signed integer

Int16 16-bit signed integer

Int32 32-bit signed integer

Int64 64-bit signed integer

Integer Arbitrary-precision signed integer; range limited only by machine resources. Commonly used.
Rational  Arbitrary-precision rational numbers. Stored as a ratio of two Integers.

Word Fixed-precision unsigned integer; storage size same as Int

Word8 8-bit unsigned integer

Word16 16-bit unsigned integer

Word32 32-bit unsigned integer

Word64 64-bit unsigned integer

These are quite a few different numeric types. There are some operations, such as ad-
dition, that work with all of them. There are others, such as asin, that only apply to
floating-point types. Table 6-2 summarizes the different functions that operate on nu-
meric types, and Table 6-3 matches the types with their respective typeclasses. As you
read that table, keep in mind that Haskell operators are just functions: you can say
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either (+) 2 3 or 2 + 3 with the same result. By convention, when referring to an
operator as a function, it is written in parenthesis as seen in this table.

Table 6-2. Selected Numeric Functions and Constants

Item Type Module Description

(+) Num a => a -> a -> Prelude Addition
a

(-) Num a => a -> a -> Prelude Subtraction
a

(*) Num a => a -> a -> Prelude Multiplication
a

/) Fractional a => a  Prelude Fractional division
->a->a

(**) Floating a => a ->  Prelude Raise to the power of
a->a

@) (Num a, Integral Prelude Raise a number to a non-negative, integral power
b) =>a ->b ->a

") (Fractional a, Prelude Raise a fractional number to any integral power
Integral b) => a -
>b ->a

(%) Integral a => a -> Data.Ratio Ratio composition
a -> Ratio a

(.8.) Bits a => a -> a - Data.Bits Bitwise and
> a

.14) Bits a => a -> a - Data.Bits Bitwise or
> a

abs Num a => a -> a Prelude Absolute value

approxRational RealFrac a => a -> Data.Ratio  Approximate rational composition based on frac-

a -> Rational tional numerators and denominators

cos Floating a => a ->  Prelude Cosine. Also provided are acos, cosh, and acosh,
a with the same type.

div Integral a => a ->  Prelude Integer division always truncated down; see also
a->a quot

fromInteger Num a => Integer - Prelude Conversion from an Integer to any numeric type
> a

fromIntegral (Integral a, Num Prelude More general conversion fromany Integral toany
b) =>a ->b numeric type

fromRational Fractional a => Prelude Conversion from a Rational. May be lossy.
Rational -> a

log Floating a => a ->  Prelude Natural logarithm
a
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Item

logBase

maxBound
minBound

mod

pi
quot

recip

rem

round

shift

sin

sqrt

tan

tolnteger

toRational

truncate

Xor

Type
Floating a => a ->
a->a

Bounded a => a
Bounded a => a

Integral a => a ->
a->a

Floating a => a
Integral a => a ->
a->a

Fractional a => a
->a

Integral a => a ->
a->a

(RealFrac a, Inte
gral b) =>a -> b
Bits a => a -> Int
->a

Floating a => a ->
a

Floating a => a ->
a

Floating a => a ->
a

Integral a => a ->
Integer

Real a => a ->
Rational
(RealFrac a, Inte
gral b) =>a -> b
Bits a=>a ->a -
> a

Module

Prelude

Prelude
Prelude

Prelude

Prelude

Prelude

Prelude

Prelude

Prelude

Bits

Prelude

Prelude

Prelude

Prelude

Prelude

Prelude

Data.Bits

Description

Log with explicit base

The maximum value of a bounded type
The minimum value of a bounded type

Integer modulus

Mathematical constant pi

Integer division; fractional part of quotient truncated
towards zero

Reciprocal

Remainder of integer division

Rounds to nearest integer

Shift left by the specified number of bits, which may

be negative for a right shift.

Sine. Also provided are asin, sinh,and asinh,
with the same type.

Square root

Tangent. Also provided are atan, tanh, and
atanh, with the same type.

Convertany Integraltoan Integer
Convert losslessly to Rational

Truncates number towards zero

Bitwise exclusive or

Table 6-3. Typeclass Instances for Numeric Types

Type

Double
Float
Int
Int16

Bits  Bounded
X X
X X

Float
ing

X

X

Frac Integral Num Real Real
tional Frac
X X X X
X X X X

X X X

X X X
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Type Bits Bounded Float Frac Integral Num Real Real

ing tional Frac
Int32 X X X X X
Int64 X X X X X
Integer X X X X
RationaloranyRatio X X X X
Word X X X X X
Word16 X X X X X
Word32 X X X X X
Word64 X X X X X

Converting between numeric types is another common need. Table 6-2 listed many
functions that can be used for conversion. However, it is not always obvious how to
apply them to convert between two arbitrary types. To help you out, Table 6-4 provides
information on converting between different types.

Table 6-4. Conversion Between Numeric Types

Source Type Destination Type

Double, Float Int, Word Integer Rational
Double, Float  fromRational . toRational truncate* truncate* toRational
Int, Word fromIntegral fromIntegral fromIntegral fromIntegral
Integer fromIntegral fromIntegral N/A fromIntegral
Rational fromRational truncate* truncate® N/A

* Instead of truncate, you could also use round, ceiling, or floor.

For an extended example demonstrating the use of these numeric typeclasses, see
“Extended example: Numeric Types.

Equality, Ordering, and Comparisons

We've already talked about the arithmetic operators such as + that can be used for all
sorts of different numbers. But there are some even more widely-applied operators in
Haskell. The most obvious, of course, are the equality tests: == and /=. These operators
are defined in the Eq class.

There are also comparison operators such as >= and <=. These are declared by the Ord
typeclass. These are in a separate typeclass because there are some types, such as
Handle, where an equality test makes sense, but there is no way to express a particular
ordering. Anything that is an instance of Ord can be sorted by Data.List.sort.

Almost all Haskell types are instances of Eq, and nearly as many are instances of Ord.

152 | Chapter6: Using Typeclasses



Sometimes, the ordering in Ord is arbitrary. For instance, for Maybe,
Nothing sorts before Just x, but this was a somewhat arbitrary decision.

Automatic Derivation

For many simple data types, the Haskell compiler can automatically derive instances
of Read, Show, Bounded, Enum, Eq, and Ord for us. This saves us the effort of having to
manually write code to compare or display our own types.

-- file: cho06/colorderived.hs

data Color = Red | Green | Blue
deriving (Read, Show, Eq, Ord)

Which types can be automatically derived?

&
06" The Haskell standard requires compilers to be able to automatically
derive instances of these specific typeclasses. This automation is not
available for other typeclasses.

Let's take a look at how these derived instances work for us:

ghci> show Red

"Red"

ghci> (read "Red")::Color

Red

ghci> (read "[Red,Red,Blue]")::[Color]
[Red,Red,Blue]

ghci> (read "[Red, Red, Blue]")::[Color]
[Red,Red,Blue]

ghci> Red == Red

True

ghci> Red == Blue

False

ghci> Data.List.sort [Blue,Green,Blue,Red]
[Red,Green,Blue,Blue]

ghci> Red < Blue

True

Notice that the sort order for Color was based on the order that the constructors were

defined.

Automatic derivation is not always possible. For instance, if you defined a type data
MyType = MyType (Int -> Bool), the compiler will not be able to derive an instance of
Show because it doesn't know how to render a function. We will get a compilation error
in such a situation.
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When we automatically derive an instance of some typeclass, the types that we refer to
in our data declaration must also be instances of that typeclass (manually or automat-
ically).

-- file: cho6/AutomaticDerivation.hs

data CannotShow = CannotShow
deriving (Show)

-- will not compile, since CannotShow is not an instance of Show
data CannotDeriveShow = CannotDeriveShow CannotShow
deriving (Show)

data OK = OK

instance Show OK where
show = "OK"

data ThisWorks = ThisWorks OK
deriving (Show)

Typeclasses at work: making JSON easier to use

The JValue type that we introduced in “Representing JSON data in Haskell is not es-
pecially easy to work with. Here is a truncated and tidied snippet of some real JSON
data, produced by a well known search engine.

{
"query": "awkward squad haskell",
"estimatedCount": 3920,
"moreResults": true,
"results":
"title": "Simon Peyton Jones: papers"”,
"snippet": "Tackling the awkward squad: monadic input/output ...",
"url": "http://research.microsoft.com/~simonpj/papers/marktoberdorf/",
"title": "Haskell for C Programmers | Lambda the Ultimate",
"snippet": "... the best job of all the tutorials I've read ...",
"url": "http://lambda-the-ultimate.org/node/724",
1
}

And here's a further slimmed down fragment of that data, represented in Haskell.

-- file: cho5/SimpleResult.hs
import SimpleJSON

result :: JValue

result = JObject [
("query", JString "awkward squad haskell"),
("estimatedCount", JINumber 3920),
("moreResults", JBool True),
("results", JArray [
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JObject [
("title", JString "Simon Peyton Jones: papers"),
("snippet", IString "Tackling the awkward ..."),
("url", 3String "http://.../marktoberdorf/")

)
]

Because Haskell doesn't natively support lists that contain types of different value, we
can't directly represent a JSON object that contains values of different types. Instead,
we must wrap each value with a JValue constructor. This limits our flexibility: if we
want to change the number 3920 to a string "3,920", we must change the constructor
that we use to wrap it from INumber to JString.

Haskell's typeclasses offer a tempting solution to this problem.

-- file: ch06/3ISONClass.hs
type JSONError = String

class JSON a where
toJValue :: a -> JValue
fromJValue :: JValue -> Either JSONError a

instance JSON JValue where
toJValue = id
fromJValue = Right

Now, instead of applying a constructor like JNumber to a value to wrap it, we apply the
toJValue function. If we change a value's type, the compiler will choose a suitable im-
plementation of toJValue to use with it.

We also provide a fromJValue function, which attempts to convert a JValue into a value
of our desired type.

More helpful errors

The return type of our fromJValue function uses the Either type. Like Maybe, this type
is predefined for us, and we'll often use it to represent a computation that could fail.

While Maybe is useful for this purpose, it gives us no information if a failure occurs:
we literally have Nothing. The Either type has a similar structure, but instead of Noth
ing, the “something bad happened” constructor is named Left, and it takes a parameter.

-- file: cho6/DataEither.hs
data Maybe a = Nothing
| Just a
deriving (Eq, Ord, Read, Show)

data Either a b = Left a
| Right b
deriving (Eq, Ord, Read, Show)
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Quite often, the type we use for the a parameter value is String, so we can provide a
useful description if something goes wrong. To see how we use the Either type in prac-
tice, let's look at a simple instance of our typeclass.
-- file: ch06/3SONClass.hs
instance JSON Bool where
toJValue = JBool

fromJValue (JBool b) = Right b
fromJValue = Left "not a JSON boolean"

Making an instance with a type synonym
The Haskell 98 standard does not allow us to write an instance of the following form,
even though it seems perfectly reasonable.

-- file: ch06/3SONClass.hs
instance JSON String where

toJValue = JString
fromJvalue (JString s) = Right s
fromJValue _ = Left "not a JSON string"

Recall that String is a synonym for [Char], which in turn is the type [a] where Char is
substituted for the type parameter a. According to Haskell 98's rules, we are not allowed
to supply a type in place of a type parameter when we write an instance. In other words,
it would be legal for us to write an instance for [a], but not for [Char].

While GHC follows the Haskell 98 standard by default, we can relax this particular
restriction by placing a specially formatted comment at the top of our source file.

-- file: ch06/JSONClass.hs
{-# LANGUAGE TypeSynonymInstances #-}

This comment is a directive to the compiler, called a pragma, which tells it to enable a
language extension. The TypeSynonymInstances language extension makes the above
code legal. We'll encounter a few other language extensions in this chapter, and a
handful more later in this book.

Living in an open world

Haskell's typeclasses are intentionally designed to let us create new instances of a type-
class whenever we see fit.

-- file: ch06/3ISONClass.hs

doubleTolValue :: (Double -> a) -> JValue -> Either JSONError a
doubleTolValue f (INumber v) = Right (f v)

doubleTolValue = Left "not a JSON number"

instance JSON Int where
toJValue = INumber . realToFrac
fromJValue = doubleToJValue round
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instance JSON Integer where
toJValue = INumber . realToFrac
fromJValue = doubleTolValue round

instance JSON Double where
toJValue = JINumber
fromJValue = doubleToJlValue id

We can add new instances anywhere; they are not confined to the module where we
define a typeclass. This feature of the typeclass system is referred to as its open world
assumption. If we had a way to express a notion of “the following are the only instances
of this typeclass that can exist”, we would have a closed world.

We would like to be able to turn a list into what JSON calls an array. We won't worry
about implementation details just yet, so let's use undefined as the bodies of the in-
stance's methods.

-- file: cho6/BrokenClass.hs
instance (JSON a) => JSON [a] where
toJValue = undefined
fromJValue = undefined

It would also be convenient if we could turn a list of name/value pairs into a JSON
object.

-- file: cho6/BrokenClass.hs

instance (JSON a) => JSON [(String, a)] where
toJValue = undefined
fromJValue = undefined

When do overlapping instances cause problems?

If we put these definitions into a source file and load them into ghci, everything initially
seems fine.

ghci> :load BrokenClass

[1 of 2] Compiling SimpleJSON ( ../cho5/SimplelSON.hs, interpreted )
[2 of 2] Compiling BrokenClass ( BrokenClass.hs, interpreted )

Ok, modules loaded: BrokenClass, SimpleJSON.

However, once we try to use the list-of-pairs instance, we run into trouble.
ghci> toJValue [("foo","bar")]

<interactive>:1:0:
Overlapping instances for JSON [([Char], [Char])]
arising from a use of “toJValue' at <interactive>:1:0-23
Matching instances:
instance (JSON a) => JSON [a]
-- Defined at BrokenClass.hs:(44,0)-(46,25)
instance (JSON a) => JSON [(String, a)]
-- Defined at BrokenClass.hs:(50,0)-(52,25)
In the expression: toJValue [("foo", "bar")]
In the definition of “it': it = toJvalue [("foo", "bar")]
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This problem of overlapping instances is a consequence of Haskell's open world as-
sumption. Here's a simpler example that makes it clearer what's going on.
-- file: cho6/Overlap.hs

class Borked a where
bork :: a -> String

instance Borked Int where
bork = show

instance Borked (Int, Int) where
bork (a, b) = bork a ++ ", " ++ bork b

instance (Borked a, Borked b) => Borked (a, b) where
bork (a, b) = ">>" ++ bork a ++ " " ++ bork b ++ "<<"

We have two instances of the typeclass Borked for pairs: one for a pair of Ints and
another for a pair of anything else that's Borked.

Suppose that we want to bork a pair of Int values. To do so, the compiler must choose
an instance to use. Because these instances are right next to each other, it may seem
that it could simply choose the more specific instance.

However, GHC is conservative by default, and insists that there must be only one pos-
sible instance that it can use. It will thus report an error if we try to use bork.

w: When do overlapping instances matter?

'”;‘ As we mentioned earlier, we can scatter instances of a typeclass across
several modules. GHC does not complain about the mere existence of
overlapping instances. Instead, it only complains when we try to use a
method of the affected typeclass, when it is forced to make a decision
about which instance to use.

Relaxing some restrictions on typeclasses

Normally, we cannot write an instance of a typeclass for a specialized version of a
polymorphic type. The [Char] type is the polymorphic type [a] specialized to the type
Char. We are thus prohibited from declaring [Char] to be an instance of a typeclass.
This is highly inconvenient, since strings are ubiquitous in real code.

The TypeSynonymInstances language extension removes this restriction, permitting us
to write such instances.

GHC supports another useful language extension, OverlappingInstances, which ad-
dresses the problem we saw with overlapping instances. When there are multiple over-
lapping instances to choose from, this extension causes the compiler to pick the most
specific one.
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We frequently use this extension together with TypeSynonymInstances. Here's an ex-
ample.

-- file: cho6/SimpleClass.hs
{-# LANGUAGE TypeSynonymInstances, OverlappingInstances #-}

import Data.list

class Foo a where
foo :: a -> String

instance Foo a => Foo [a] where

foo = concat . intersperse ", " . map foo

instance Foo Char where
foo ¢ = [c]

instance Foo String where
foo = id
If we apply foo to a String, the compiler will use the String-specific implementation.
Even though we have an instance of Foo for [a] and Char, the instance for String is
more specific, so GHC chooses it. For other types of list, we will see the behavior
specified for [a].

With the OverlappingInstances extension enabled, GHC will still reject code if it finds
more than one equally specific instance.

‘When to use the OverlappinglInstances extension

] :‘ Here's an important point: GHC treats OverlappingInstances as affect-
ing the declaration of an instance, not a location where we use the in-
stance. In other words, when we define an instance that we wish to allow
to overlap with another instance, we must enable the extension for the
module that contains the definition. When it compiles the module,
GHC will record that instance as “can be overlapped with other instan-

»

ces .

Once we import this module and use the instance, we won't need to
enable OverlappingInstances in the importing module: GHC will al-
ready know that the instance was marked as “okay to overlap” when it
was defined.

This behaviour is useful when we are writing a library: we can choose
to create overlappable instances, but users of our library do not need to
enable any special language extensions.

How does show work for strings?

The OverlappingInstances and TypeSynonymInstances language extensions are specific
to GHC, and by definition were not present in Haskell 98. However, the familiar
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Show typeclass from Haskell 98 somehow renders a list of Char differently from a list
of Int. It achieves this via a clever, but simple, trick.

The Show class defines both a show method, which renders one value, and a showList
method, which renders a list of values. The default implementation of showList renders
a list using square brackets and commas.

The instance of Show for [a] is implemented using showList. The instance of Show for
Char provides a special implementation of showList that uses double quotes and es-
capes non-ASClI-printable characters.

As a result, if someone applies show to a [Char] value, the implementation of
showList will be chosen, and it will correctly render the string using quotes.

Atleast sometimes, then, we can avoid the need for the OverlappingInstances extension
with a little bit of lateral thinking.

How to give a type a new identity

In addition to the familiar data keyword, Haskell provides us with another way to create
a new type, using the newtype keyword.
-- file: cho6/Newtype.hs

data DataInt = D Int
deriving (Eq, Ord, Show)

newtype NewtypeInt = N Int
deriving (Eq, Ord, Show)

The purpose of a newtype declaration is to rename an existing type, giving it a distinct
identity. As we can see, it is similar in appearance to a type declared using the data
keyword.

W
A

The type and newtype keywords

[ ‘f‘" Although their names are similar, the type and newtype keywords have
different purposes. The type keyword gives us another way of referring
to a type, like a nickname for a friend. Both we and the compiler know
that [Char] and String names refer to the same type.

In contrast, the newtype keyword exists to hide the nature of a type.
Consider a UniquelD type.
-- file: cho6/Newtype.hs

newtype UniqueID = UniqueID Int
deriving (Eq)

The compiler treats UniquelD as a different type from Int. As a user of
a UniquelD, we know only that we have a unique identifier; we cannot
see that it is implemented as an Int.
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When we declare a newtype, we must choose which of the underlying type's typeclass
instances we want to expose. Here, we've elected to make Newtypelnt provide Int's
instances for Eq, Ord and Show. As a result, we can compare and print values of type
Newtypelnt.

ghci> N1 < N 2
True

Since we are not exposing Int's Num or Integral instances, values of type Newtypelnt
are not numbers. For instance, we can't add them.

ghci> N 313 + N 37

<interactive>:1:0:
No instance for (Num NewtypeInt)
arising from a use of “+' at <interactive>:1:0-11

Possible fix: add an instance declaration for (Num NewtypeInt)

In the expression: N 313 + N 37

In the definition of “it': it = N 313 + N 37
As with the data keyword, we can use a newtype's value constructor to create a new
value, or to pattern match on an existing value.

If a newtype does not use automatic deriving to expose the underlying type's imple-
mentation of a typeclass, we are free to either write a new instance or leave the typeclass
unimplemented.

Differences between data and newtype declarations

The newtype keyword exists to give an existing type a new identity, and it has more
restrictions on its uses than the data keyword. Specifically, a newtype can only have one
value constructor, and that constructor must have exactly one field.

-- file: cho6/NewtypeDiff.hs

-- ok: any number of fields and constructors
data TwoFields = TwoFields Int Int

-- ok: exactly one field
newtype Okay = ExactlyOne Int

-- ok: type parameters are no problem
newtype Param a b = Param (Either a b)

-- ok: record syntax is fine
newtype Record = Record {
getInt :: Int

-- bad: no fields
newtype TooFew = TooFew

-- bad: more than one field
newtype TooManyFields = Fields Int Int
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-- bad: more than one constructor
newtype TooManyCtors = Bad Int
| Worse Int

Beyond this, there's another important difference between data and newtype. A type
created with the data keyword has a book-keeping cost at runtime, for example to track
which constructor a value was created with. A newtype value, on the other hand, can
only have one constructor, and so does not need this overhead. This makes it more
space- and time-efficient at runtime.

Because a newtype's constructor is used only at compile time and does not even exist at
runtime, pattern matching on undefined behaves differently for types defined using
newtype than for those that use data.

To understand the difference, let's first review what we might expect with a normal
datatype. We are already familiar with the idea that if undefined is evaluated at runtime,
it causes a crash.

ghci> undefined
*** Exception: Prelude.undefined

Here is a pattern match where we construct a Datalnt using the D constructor, and put
undefined inside.

ghci> case D undefined of D _ -> 1
1

Since our pattern matches against the constructor but doesn't inspect the payload, the
undefined remains unevaluated and does not cause an exception to be thrown.

In this example, we're not using the D constructor, so the unprotected undefined is
evaluated when the pattern match occurs, and we throw an exception.

ghci> case undefined of D _ -> 1
*** Exception: Prelude.undefined

When we use the N constructor for the Newtypelnt type, we see the same behaviour as
with the Datalnt type's D constructor: no exception.

ghci> case N undefined of N _ -> 1
1

The crucial difference arises when we get rid of the N constructor from the expression,
and match against an unprotected undefined.

ghci> case undefined of N _ -> 1
1

We don't crash! Because there's no constructor present at runtime, matching against N
_ is in fact equivalent to matching against the plain wild card _: since the wild card
always matches, the expression does not need to be evaluated.
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Another perspective on newtype constructors

&
03" Even though we use the value constructor for a newtype in the same way
as that of a type defined using the data keyword, all it does is coerce a
value between its “normal” type and its newtype type.

In other words, when we apply the N constructor in an expression, we
coerce an expression from type Int to type Newtypelnt as far as we and
the compiler are concerned, but absolutely nothing occurs at runtime.

Similarly, when we match on the N constructor in a pattern, we coerce
an expression from type Newtypelnt to Int, but again there's no over-
head involved at runtime.

Summary: the three ways of naming types
Here's a brief recap of Haskell's three ways to introduce new names for types.

* The data keyword introduces a truly new albegraic data type.

* The type keyword gives us a synonym to use for an existing type. We can use the
type and its synonym interchangeably.

* The newtype keyword gives an existing type a distinct identity. The original type
and the new type are not interchangeable.

JSON typeclasses without overlapping instances

Enabling GHC's support for overlapping instances is an effective and quick way to make
our JSON code happy. In more complex cases, we will occasionally be faced with sev-
eral equally good instances for some typeclass, in which case overlapping instances will
not help us and we will need to put some newtype declarations into place. To see what's
involved, let's rework our JSON typeclass instances to use newtypes instead of overlap-
ping instances.

Our first task, then, is to help the compiler to distinguish between [a], the representa-
tion we use for JSON arrays, and [(String,[a])], which we use for objects. These were
the types that gave us problems before we learned about OverlappingInstances. We
wrap up the list type so that the compiler will not see it as a list.

-- file: ch06/3ISONClass.hs

newtype JAry a = JAry {

fromJAry :: [a]
} deriving (Eq, Ord, Show)

When we export this type from our module, we'll export the complete details of the
type. Our module header will look like this:

-- file: ch06/3SONClassExport.hs
module JSONClass
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(

JAry(..)
) where

The “(..)” following the JAry name means “export all details of this type”.

Asslight deviation from normal use

N
03" Usually, when we export a newtype, we will not export its data con-
structor, in order to keep the details of the type abstract. Instead, we
would define a function to apply the constructor for us.

-- file: cho6/3SONClass.hs
jary :: [a] -> JAry a
jary = JAry

We would then export the type constructor, the deconstructor function,
and our construction function, but not the data constructor.

-- file: cho6/3SONClassExport.hs
module JSONClass

JAry(fromJAry)
» Jary
) where
When we don't export a type's data constructor, clients of our library
can only use the functions we provide to construct and deconstruct val-
ues of that type. This gives us, the library authors, the liberty to change
our internal representation if we need to.

If we export the data constructor, clients are likely to start depending
on it, for instance by using it in patterns. If we later wish to change the
innards of our type, we'll risk breaking any code that uses the construc-
tor.

In our circumstances here, we have nothing to gain by making the array
wrapper abstract, so we may as well simply export the entire definition
of the type.

We provide another wrapper type that hides our representation of a JSON object.

-- file: cho6/JSONClass.hs
newtype JObj a = JObj {
fromJObj :: [(String, a)]
} deriving (Eq, Ord, Show)

With these types defined, we make small changes to the definition of our JValue type.

-- file: cho6/JSONClass.hs
data JValue = JString String
| INumber Double
| JBool Bool
| INull
| JObject (JObj IValue) -- was [(String, JValue)]
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| JArray (JAry JValue) -- was [JValue]
deriving (Eq, Ord, Show)

This change doesn't affect the instances of the JSON typeclass that we've already writ-
ten, but we will want to write instances for our new JAry and JODbj types.

-- file: ch06/JSONClass.hs
jaryFromJValue :: (JSON a) => JValue -> Either JSONError (JAry a)

jaryToJValue :: (JSON a) => JAry a -> JValue

instance (JSON a) => JSON (JAry a) where
toJValue = jaryTolValue
fromJValue = jaryFromJValue

Let's take a slow walk through the individual steps of converting a JAry a to a JValue.
Given a list where we know that everything inside is a JSON instance, converting it to
a list of JValues is easy.

-- file: cho6/3SONClass.hs

listToJValues :: (JSON a) => [a] -> [IValue]
listToJValues = map toJValue

Taking this and wrapping it to become a JAry JValue is just a matter of applying the
newtype's type constructor.
-- file: cho6/3SONClass.hs

jvaluesToJAry :: [JValue] -> JAry JValue
jvaluesToJAry = JAry

(Remember, this has no performance cost. We're just telling the compiler to hide the
fact that we're using a list.) To turn this into a JValue, we apply another type construc-
tor.

-- file: ch06/3SONClass.hs

jaryOflValuesTolValue :: JAry JValue -> JValue
jaryOfJValuesTolValue = JArray

Assemble these pieces using function composition, and we get a concise one-liner for
converting to a JValue.

-- file: ch06/3ISONClass.hs
jaryTolValue = JArray . JAry . map toJValue . fromJAry

We have more work to do to convert from a JValue to a JAry a, but we'll break it into
reusable parts. The basic function is straightforward.

-- file: ch06/3ISONClass.hs

jaryFromJValue (JArray (JAry a)) =

whenRight JAry (mapEithers fromJValue a)
jaryFromJValue _ = Left "not a JSON array"

The whenRight function inspects its argument: calls a function on it if it was created
with the Right constructor, and leaves a Left value untouched.

-- file: cho6/JSONClass.hs
whenRight :: (b -> ¢) -> Either a b -> Either a c
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whenRight _ (Left err) = Left err
whenRight f (Right a) = Right (f a)

More complicated is mapEithers. It acts like the regular map function, but if it ever en-
counters a Left value, it returns that immediately, instead of continuing to accumulate
a list of Right values.

-- file: ch06/3ISONClass.hs
mapEithers :: (a -> Either b c¢) -> [a] -> Either b [c]
mapEithers f (x:xs) = case mapEithers f xs of
Left err -> Left err
Right ys -> case f x of
Left err -> Left err
Right y -> Right (y:ys)
mapEithers = = Right []

Because the elements of the list hidden in the JObj type have a little more structure, the
code to convert to and from a JValue is a bit more complex. Fortunately, we can reuse
the functions that we just defined.

-- file: cho6/3SONClass.hs
import Control.Arrow (second)

instance (JSON a) => JSON (JObj a) where
toJvalue = JObject . JObj . map (second tolValue) . fromJObj

fromJValue (JObject (JObj o)) = whenRight JObj (mapEithers unwrap o)
where unwrap (k,v) = whenRight ((,) k) (fromJvalue v)
fromJValue = Left "not a JSON object"

Exercises

1. Load the Control.Arrow module into ghci, and find out what the second function
does.

2. What is the type of (,)? When you use it in ghci, what does it do? What about
(:,)?

The dreaded monomorphism restriction

The Haskell 98 standard has a subtle feature that can sometimes bite us in unexpected
circumstances. Here's a simple function definition that illustrates the issue.

-- file: cho6/Monomorphism.hs
myShow = show

If we try to load this definition into ghci, it issues a peculiar complaint.

ghci> :load Monomorphism
[1 of 1] Compiling Main ( Monomorphism.hs, interpreted )

Monomorphism.hs:2:9:
Ambiguous type variable “a

in the constraint:
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“Show a' arising from a use of “show' at Monomorphism.hs:2:9-12
Possible cause: the monomorphism restriction applied to the following:
myShow :: a -> String (bound at Monomorphism.hs:2:0)
Probable fix: give these definition(s) an explicit type signature
or use -fno-monomorphism-restriction
Failed, modules loaded: none.

The “monomorphism restriction” to which the error message refers is a part of the
Haskell 98 standard. Monomorphism is simply the opposite of polymorphism: it indi-
cates that an expression has exactly one type. The restriction lies in the fact that Haskell
sometimes forces a declaration to be less polymorphic than we would expect.

We mention the monomorphism restriction here because although it isn't specifically
related to typeclasses, they usually provide the circumstances in which it crops up.

It's possible that you will not run into the monomorphism restriction in
real code for a long time. We don't think you need to try to remember
s the details of this section. It should suffice to make a mental note of its
" existence, until eventually GHC complains at you with something like
the above error message. If that occurs, simply remember that you read
about the error here, and come back for guidance.

We won't attempt to explain the monomorphism restriction¥. The consensus within
the Haskell community is that it doesn't arise often; it is tricky to explain; it provides
almost no practical benefit; and so it mostly serves to trip people up. For an example
of its trickiness, while the definition above falls afoul of it, the following two compile
without problems.

-- file: cho6/Monomorphism.hs
myShow2 value = show value

myShow3 :: (Show a) => a -> String
myShow3 = show

As these alternative definitions suggest, if GHC complains about the monomorphism
restriction, we have three easy ways to address the error.

* Make the function's arguments explicit, instead of leaving them implicit.

* Give the definition an explicit type signature, instead of making the compiler infer
its type.

* Leave the code untouched, and compile the module with the NoMonomorphismRes
triction language extension enabled. This disables the monomorphism restric-
tion.

¥ If you simply must read the gory details, see section 4.5.5 (http://www.haskell.orglonlinereport/decls.html
#sect4.5.5) of the Haskell 98 Report.
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Because the monomorphism restriction is unwanted and unloved, it will almost cer-
tainly be dropped from the next revision of the Haskell standard. This does not quite
mean that compiling with NoMonomorphismRestriction is always the right thing to do:
some Haskell compilers (including older versions of GHC) do not understand this
extension, but they'll accept either of the other approaches to making the error disap-
pear. If this degree of portability isn't a concern to you, then by all means enable the
language extension.

Conclusion

In this chapter, you learned about the need for typeclasses and how to use them. We
talked about defining our own typeclasses and then covered some of the important
typeclasses that are defined in the Haskell library. Finally, we showed how to have the
Haskell compiler automatically derive instances of certain typeclasses for your types.
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CHAPTER 7

1/0

It should be obvious that most, if not all, programs are devoted to gathering data from
outside, processing it, and providing results back to the outside world. That is, input
and output are key.

Haskell's I/O system is powerful and expressive. It is easy to work with and important
to understand. Haskell strictly separates pure code from code that could cause things
to occur in the world. That is, it provides a complete isolation from side-effects in pure
code. Besides helping programmers to reason about the correctness of their code, it
also permits compilers to automatically introduce optimizations and parallelism.

We'll begin this chapter with simple, standard-looking I/O in Haskell. Then we'll dis-
cuss some of the more powerful options as well as provide more detail on how I/O fits
into the pure, lazy, functional Haskell world.

Classic1/0 in Haskell

Let's get started with I/O in Haskell by looking at a program that looks surprisingly
similar to I/O in other languages such as C or Perl.
-- file: cho7/basicio.hs
main = do
putStrLn "Greetings! What is your name?"
inpStr <- getline
putStrLn $ "Welcome to Haskell, " ++ inpStr ++ "!"

You can compile this program to a standalone executable, run it with runghc, or invoke
main from within ghci. Here's a sample session using runghc:

$ runghc basicio.hs

Greetings! What is your name?
John

Welcome to Haskell, John!

That's a fairly simple, obvious result. You can see that putStrLn writes out a String,
followed by an end-of-line character. getLine reads a line from standard input. The
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<- syntax may be new to you. Put simply, that binds the result from executing an I/O
action to a name. = We use the simple list concatenation operator ++ to join the input
string with our own text.

Let's take a look at the types of putStrLn and getLine. You can find that information in
the library reference, or just ask ghci:

ghci> :type putStrln

putStrLn :: String -> I0 ()

ghci> :type getline

getline :: IO String
Notice that both of these types have IO in their return value. That is your key to knowing
that they may have side effects, or that they may return different values even when
called with the same arguments, or both. The type of putStrLn looks like a function. It
takes a parameter of type String and returns value of type I0 (). Just what is an I0
() though?

Anything that is type I0 something is an I/O action. You can store it and nothing will
happen. I could say writefoo = putStrLn "foo" and nothing happens right then. But if
I later use writefoo in the middle of another I/O action, the writefoo action will be
executed when its parent action is executed -- [/O actions can be glued together to form
bigger I/O actions. The () is an empty tuple (pronounced “unit”), indicating that there
is no return value from putStrLn. This is similar to void in Java or C.T

Actions can be created, assigned, and passed anywhere. However, they
may only be performed (executed) from within another I/O action.

“‘{
[153

Let's look at this with gheci:

ghci> let writefoo = putStrln "foo"
ghci> writefoo
foo

In this example, the output foo is not a return value from putStrLn. Rather, it's the side
effect of putStrLn actually writing foo to the terminal.

Notice one other thing: ghci actually executed writefoo. This means that, when given
an I/O action, ghci will perform it for you on the spot.

" You will later see that it has a more broad application, but it is sufficient to think of it in these terms for now.

T The type of the value () is also ().
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o WhatIs AnI/O Action?

&
0 Actions:
* Have the type I0 t
e Are first-class values in Haskell and fit seamlessly with Haskell's
type system

* Produce an effect when performed, but not when evaluated. That
is, they only produce an effect when called by something else in an
I/O context.

* Any expression may produce an action as its value, but the action
will not perform I/O until it is executed inside another I/O action
(or it is main)

e Performing (executing) an action of type I0 t may perform I/O and
will ultimately deliver a result of type t

The type of getLine may look strange to you. Itlooks like a value, rather than a function.
And in fact, that is one way to look at it: getLine is storing an I/O action. When that
action is performed, you get a String. The <- operator is used to "pull out" the result
from performing an I/O action and store it in a variable.

main itself is an I/O action with type I0 (). You can only perform I/O actions from
within other I/O actions. All I/O in Haskell programs is driven from the top at main,
which is where execution of every Haskell program begins. This, then, is the mechanism
that provides isolation from side effects in Haskell: you perform I/O in your I0 actions,
and call pure (non-1/0) functions from there. Most Haskell code is pure; the I/O actions
perform I/O and call that pure code.

do is a convenient way to define a sequence of actions. As you'll see later, there are other
ways. When you use do in this way, indentation is significant; make sure you line up
your actions properly.

You only need to use do if you have more than one action that you need to perform.
The value of a do block is the value of the last action executed. For a complete descrip-
tion of do syntax, see “Desugaring of do blocks.

Let's consider an example of calling pure code from within an I/O action:

-- file: cho7/callingpure.hs

name2reply :: String -> String

name2reply name =
"Pleased to meet you, " ++ name ++ ".\n" ++
"Your name contains " ++ charcount ++ " characters."
where charcount = show (length name)

main :: I0 ()

main = do
putStrLn "Greetings once again. What is your name?"
inpStr <- getline
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let outStr = name2reply inpStr
putStrLn outStr

Notice the name2reply function in this example. It is a regular Haskell function and
obeys all the rules we've told you about: it always returns the same result when given
the same input, it has no side effects, and it operates lazily. It uses other Haskell func-
tions: (++), show, and length.

Down inmain, we bind the result of name2reply inpStr to outStr. When you're working
in a do block, you use <- to get results from IO actions and let to get results from pure
code. When used in a do block, you should not put in after your let statement.

You can see here how we read the person's name from the keyboard. Then, that data
got passed to a pure function, and its result was printed. In fact, the last two lines of
main could have been replaced with putStrLn (name2reply inpStr). So, while main did
have side effects—it caused things to appear on the terminal, for instance—
name2reply did not and could not. That's because name2reply is a pure function, not an
action.

Let's examine this with ghci:

ghci> :load callingpure.hs

[1 of 1] Compiling Main ( callingpure.hs, interpreted )
Ok, modules loaded: Main.

ghci> name2reply "John"

"Pleased to meet you, John.\nYour name contains 4 characters."
ghci> putStrLn (name2reply "John")

Pleased to meet you, John.

Your name contains 4 characters.

The \nwithin the string is the end-of-line (newline) character, which causes the terminal
to begin a new line in its output. Just calling name2reply "John" in ghci will show you
the \n literally, because it is using show to display the return value. But using putStrLn
sends it to the terminal, and the terminal interprets \n to start a new line.

What do you think will happen if you simply type main at the ghci prompt? Give it a try.

After looking at these example programs, you may be wondering if Haskell is really
imperative rather than pure, lazy, and functional. Some of these examples look like a
sequence of actions to be followed in order. There's more to it than that, though. We'll
discuss that question later in this chapter in “Is Haskell Really Imperative? and “Lazy
1/0.

Pure vs. 1/0

As a way to help with understanding the differences between pure code and I/O, here's
a comparison table. When we speak of pure code, we are talking about Haskell func-
tions that always return the same result when given the same input and have no side
effects. In Haskell, only the execution of I/O actions avoid these rules.
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Table 7-1. Pure vs. Impure

Pure Impure

Always produces the same result when given the same param-  May produce different results for the same parameters
eters

Never has side effects May have side effects
Never alters state May alter the global state of the program, system, or world
Why Purity Matters

In this section, we've discussed how Haskell draws a clear distinction between pure
code and I/O actions. Most languages don't draw this distinction. In languages such as
C or Java, there is no such thing as a function that is guaranteed by the compiler to
always return the same result for the same arguments, or a function that is guaranteed
to never have side effects. The only way to know if a given function has side effects is
to read its documentation and hope that it's accurate.

Many bugs in programs are caused by unanticipated side effects. Still more are caused
by misunderstanding circumstances in which functions may return different results for
the same input. As multithreading and other forms of parallelism grow increasingly
common, it becomes more difficult to manage global side effects.

Haskell's method of isolating side effects into I/O actions provides a clear boundary.
You can always know which parts of the system may alter state and which won't. You
can always be sure that the pure parts of your program aren't having unanticipated
results. This helps you to think about the program. It also helps the compiler to think
about it. Recent versions of ghe, for instance, can provide a level of automatic paral-
lelism for the pure parts of your code -- something of a holy grail for computing.

For more discussion on this topic, refer to “Side Effects with Lazy /0.

Working With Files and Handles

So far, you've seen how to interact with the user at the computer's terminal. Of course,
y p
you'll often need to manipulate specific files. That's easy to do, too.

Haskell defines quite a few basic functions for I/O, many of which are similar to func-
tions seen in other programming languages. The library reference for System.I0 pro-
vides a good summary of all the basic I/O functions, should you need one that we aren't
touching upon here.

You will generally begin by using openFile, which will give you a file Handle. That
Handle is then used to perform specific operations on the file. Haskell provides functions
such as hPutStrLn that work just like putStrLn but take an additional argument—a
Handle—that specifies which file to operate upon. When you're done, you'll use
hClose to close the Handle. These functions are all defined in System.I0, so you'll need
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to import that module when working with files. There are "h" functions corresponding
to virtually all of the non-"h" functions; for instance, there is print for printing to the
screen and hPrint for printing to a file.

Let's start with an imperative way to read and write files. This should seem similar to
awhile loop that you may find in other languages. This isn't the best way to write it in
Haskell; later, you'll see examples of more Haskellish approaches.

-- file: cho7/toupper-imp.hs

import System.IO
import Data.Char(toUpper)

main :: I0 ()

main = do
inh <- openFile "input.txt" ReadMode
outh <- openFile "output.txt" WriteMode
mainloop inh outh
hClose inh
hClose outh

mainloop :: Handle -> Handle -> IO ()
mainloop inh outh =
do ineof <- hISEOF inh
if ineof
then return ()
else do inpStr <- hGetLine inh
hPutStrLn outh (map toUpper inpStr)
mainloop inh outh

Like every Haskell program, execution of this program begins with main. Two files are
opened: input.txt is opened for reading, and output.txt is opened for writing. Then
we call mainloop to process the file.

mainloop begins by checking to see if we're at the end of file (EOF) for the input. If not,
we read a line from the input. We write out the same line to the output, after first
converting it to uppercase. Then we recursively call mainloop again to continue pro-
cessing the file.¥

Notice that return call. This is not really the same as return in C or Python. In those
languages, return is used to terminate execution of the current function immediately,
and to return a value to the caller. In Haskell, return is the opposite of <-. That is,
return takes a pure value and wraps it inside 1O. Since every I/O action must return
some IO type, if your result came from pure computation, you must use return to wrap
it in IO. As an example, if 7 is an Int, then return 7 would create an action stored in a
value of type I0 Int. When executed, that action would produce the result 7. For more
details on return, see “The True Nature of Return.

¥ Imperative programmers might be concerned that such a recursive call would consume large amounts of
stack space. In Haskell, recursion is a common idiom, and the compiler is smart enough to avoid consuming
much stack by optimizing tail-recursive functions.
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Let's try running the program. We've got a file named input.txt that looks like this:

This is cho8/input.txt

Test Input

I like Haskell
Haskell is great
I1/0 is fun

123456789

Now, you can use runghc toupper-imp.hs and you'll find output.txt in your directory.
It should look like this:

THIS IS CHO8/INPUT.TXT

TEST INPUT
I LIKE HASKELL
HASKELL IS GREAT
1/0 IS FUN

123456789

More on openFile

Let's use ghci to check on the type of openFile:

ghci> :module System.IO
ghci> :type openFile
openFile :: FilePath -> IOMode -> IO Handle

FilePath is simply another name for String. It is used in the types of I/O functions to
help clarify that the parameter is being used as a filename, and not as regular data.

I0Mode specifies how the file is to be managed. The possible values for I0Mode are listed
in Table 7-2.

Table 7-2. Possible IOMode Values

I0Mode Canread? Canwrite?  Starting position  Notes

ReadMode Yes No Beginning of file File must exist already

WriteMode No Yes Beginning of file File is truncated (completely emptied) if it already
existed

ReadWriteMode  Yes Yes Beginning of file File is created if it didn't exist; otherwise, existing

datais left intact

AppendMode No Yes End of file File is created if it didn't exist; otherwise, existing
data is left intact.
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While we are mostly working with text examples in this chapter, binary files can also
be used in Haskell. If you are working with a binary file, you should use openBinary
File instead of openFile. Operating systems such as Windows process files differently
if they are opened as binary instead of as text. On operating systems such as Linux,
both openFile and openBinaryFile perform the same operation. Nevertheless, for port-
ability, it is still wise to always use openBinaryFile if you will be dealing with binary data.

Closing Handles

You've already seen that hClose is used to close file handles. Let's take a moment and
think about why this is important.

As you'll see in “Buffering, Haskell maintains internal buffers for files. This provides
an important performance boost. However, it means that until you call hClose on a file
that is open for writing, your data may not be flushed out to the operating system.

Another reason to make sure to hClose files is that open files take up resources on the
system. If your program runs for a long time, and opens many files but fails to close
them, it is conceivable that your program could even crash due to resource exhaustion.
All of this is no different in Haskell than in other languages.

When a program exits, Haskell will normally take care of closing any files that remain
open. However, there are some circumstances in which this may not happen§, so once
again, it is best to be responsible and call hClose all the time.

Haskell provides several tools for you to use to easily ensure this happens, regardless
of whether errors are present. You can read about finally in “Extended Example:
Functional I/O and Temporary Files and bracket in “The acquire-use-release cycle.

Seek and Tell

When reading and writing from a Handle that corresponds to a file on disk, the operating
system maintains an internal record of the current position. Each time you do another
read, the operating system returns the next chunk of data that begins at the current
position, and increments the position to reflect the data that you read.

You can use hTell to find out your current position in the file. When the file is initially
created, it is empty and your position will be 0. After you write out 5 bytes, your position
will be 5, and so on. hTell takes a Handle and returns an I0 Integer with your position.

The companion to hTell is hSeek. hSeek lets you change the file position. It takes three
parameters: a Handle, a SeekMode, and a position.

SeekMode can be one of three different values, which specify how the given position is
to be interpreted. AbsoluteSeek means that the position is a precise location in the file.

8 1f there was a bug in the C part of a hybrid program, for instance
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This is the same kind of information that hTell gives you. RelativeSeek means to seek
from the current position. A positive number requests going forwards in the file, and
a negative number means going backwards. Finally, SeekFromEnd will seek to the speci-
fied number of bytes before the end of the file. hSeek handle SeekFromEnd 0 will take
you to the end of the file. For an example of hSeek, refer to “Extended Example: Func-
tional I/O and Temporary Files.

Not all Handles are seekable. A Handle usually corresponds to a file, but it can also
correspond to other things such as network connections, tape drives, or terminals. You
can use hIsSeekable to see if a given Handle is seekable.

Standard Input, Output, and Error

Earlier, we pointed out that for each non-"h" function, there is usually also a corre-
sponding "h" function that works on any Handle. In fact, the non-"h" functions are
nothing more than shortcuts for their "h" counterparts.

There are three pre-defined Handles in System.IO0. These Handles are always available
for your use. They are stdin, which corresponds to standard input; stdout for standard
output; and stderr for standard error. Standard input normally refers to the keyboard,
standard output to the monitor, and standard error also normally goes to the monitor.

Functions such as getLine can thus be trivially defined like this:
getlLine = hGetline stdin

putStrLn = hPutStrlLn stdout
print = hPrint stdout

We're using partial application here. If this isn't making sense, consult
“Partial function application and currying for a refresher.

Earlier, we told you what the three standard file handles "normally" correspond to.
That's because some operating systems let you redirect the file handles to come from
(or go to) different places—files, devices, or even other programs. This feature is used
extensively in shell scripting on POSIX (Linux, BSD, Mac) operating systems, but can
also be used on Windows.

[t often makes sense to use standard input and output instead of specific files. This lets
you interact with a human at the terminal. But it also lets you work with input and
output files—or even combine your code with other programs—if that's what's re-
quested. !

As an example, we can provide input to callingpure.hs in advance like this:

I For more information on interoperating with other programs with pipes, see “Extended Example: Piping.
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$ echo John|runghc callingpure.hs
Greetings once again. What is your name?
Pleased to meet you, John.

Your name contains 4 characters.

While callingpure.hs was running, it did not wait for input at the keyboard; instead
it received John from the echo program. Notice also that the output didn't contain the
word John on a separate line as it did when this program was run at the keyboard. The
terminal normally echoes everything you type back to you, but that is technically input,
and is not included in the output stream.

Deleting and Renaming Files

So farin this chapter, we've discussed the contents of the files. Let's now talk a bit about
the files themselves.

System.Directory provides two functions you may find useful. removeFile takes a single
argument, a filename, and deletes that file.” renameFile takes two filenames: the first
is the old name and the second is the new name. If the new filename is in a different
directory, you can also think of this as a move. The old filename must exist prior to the
call to renameFile. If the new file already exists, it is removed before the rename takes
place.

Like many other functions that take a filename, if the "old" name doesn't exist, rename
File will raise an exception. More information on exception handling can be found in
Chapter 19.

There are many other functions in System.Directory for doing things such as creating
and removing directories, finding lists of files in directories, and testing for file exis-
tence. These are discussed in “Directory and File Information.

Temporary Files

Programmers frequently need temporary files. These files may be used to store large
amounts of data needed for computations, data to be used by other programs, or any
number of other uses.

While you could craft a way to manually open files with unique names, the details of
doing this in a secure way differ from platform to platform. Haskell provides a con-
venient function called openTempFile (and a corresponding openBinaryTempFile) to
handle the difficult bits for you.

openTempFile takes two parameters: the directory in which to create the file, and a
"template" for naming the file. The directory could simply be "." for the current work-

#POSIX programmers may be interested to know that this corresponds to unlink() in C.
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ing directory. Or you could use System.Directory.getTemporaryDirectory to find the
best place for temporary files on a given machine. The template is used as the basis for
the file name; it will have some random characters added to it to ensure that the result
is truly unique. It guarantees that it will be working on a unique filename, in fact.

The return type of openTempFile is I0 (FilePath, Handle). The first part of the tuple is
the name of the file created, and the second is a Handle opened in ReadWriteMode over
that file. When you're done with the file, you'll want to hClose it and then call remove
File to delete it. See the following example for a sample function to use.

Extended Example: Functional 1/0 and Temporary Files

Here's a larger example that puts together some concepts from this chapter, from some
earlier chapters, and a few you haven't seen yet. Take a look at the program and see if
you can figure out what it does and how it works.

-- file: cho7/tempfile.hs

import System.IO

import System.Directory(getTemporaryDirectory, removeFile)
import System.IO.Error(catch)

import Control.Exception(finally)

-- The main entry point. Work with a temp file in myAction.
main :: I0 ()
main = withTempFile "mytemp.txt" myAction

{- The guts of the program. Called with the path and handle of a temporary
file. When this function exits, that file will be closed and deleted
because myAction was called from withTempFile. -}

myAction :: FilePath -> Handle -> I0 ()

myAction tempname temph =

do -- Start by displaying a greeting on the terminal
putStrLn "Welcome to tempfile.hs"
putStrLn $ "I have a temporary file at " ++ tempname

-- Let's see what the initial position is
pos <- hTell temph
putStrLn $ "My initial position is

n

++ show pos

-- Now, write some data to the temporary file

let tempdata = show [1..10]

putStrLn $ "Writing one line containing " ++
show (length tempdata) ++ " bytes:
tempdata

hPutStrLn temph tempdata

++

-- Get our new position. This doesn't actually modify pos

-- in memory, but makes the name "pos" correspond to a different
-- value for the remainder of the "do" block.
pos <- hTell temph

putStrLn $ "After writing, my new position is

++ show pos
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-- Seek to the beginning of the file and display it
putStrLn $ "The file content is: "
hSeek temph AbsoluteSeek 0

-- hGetContents performs a lazy read of the entire file
c <- hGetContents temph

-- Copy the file byte-for-byte to stdout, followed by \n
putStrln ¢

-- Let's also display it as a Haskell literal
putStrLn $ "Which could be expressed as this Haskell literal:"
print c

{- This function takes two parameters: a filename pattern and another
function. It will create a temporary file, and pass the name and Handle
of that file to the given function.

The temporary file is created with openTempFile. The directory is the one
indicated by getTemporaryDirectory, or, if the system has no notion of

a temporary directory, "." is used. The given pattern is passed to
openTempFile.

After the given function terminates, even if it terminates due to an
exception, the Handle is closed and the file is deleted. -}
withTempFile :: String -> (FilePath -> Handle -> I0 a) -> I0 a
withTempFile pattern func =
do -- The library ref says that getTemporaryDirectory may raise on
-- exception on systems that have no notion of a temporary directory.
-- So, we run getTemporaryDirectory under catch. catch takes
-- two functions: one to run, and a different one to run if the
-- first raised an exception. If getTemporaryDirectory raised an
-- exception, just use "." (the current working directory).
tempdir <- catch (getTemporaryDirectory) (\_ -> return ".")
(tempfile, temph) <- openTempFile tempdir pattern

-- Call (func tempfile temph) to perform the action on the temporary
-- file. finally takes two actions. The first is the action to run.
-- The second is an action to run after the first, regardless of
-- whether the first action raised an exception. This way, we ensure
-- the temporary file is always deleted. The return value from finally
-- is the first action's return value.
finally (func tempfile temph)

(do hClose temph

removeFile tempfile)

Let's start looking at this program from the end. The withTempFile function demon-
strates that Haskell doesn't forget its functional nature when /O is introduced. This
function takes a String and another function. The function passed to withTempFile is
invoked with the name and Handle of a temporary file. When that function exits, the
temporary file is closed and deleted. So even when dealing with I/O, we can still find
the idiom of passing functions as parameters to be convenient. Lisp programmers might
find our withTempFile function similar to Lisp's with-open-file function.
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There is some exception handling going on to make the program more robust in the
face of errors. You normally want the temporary files to be deleted after processing
completes, even if something went wrong. So we make sure that happens. For more on
exception handling, see Chapter 19.

Let's return to the start of the program. main is defined simply as withTempFile
"mytemp.txt" myAction. myAction, then, will be invoked with the name and Handle of
the temporary file.

myAction displays some information to the terminal, writes some data to the file, seeks
to the beginning of the file, and reads the data back with hGetContents.” It then displays
the contents of the file byte-for-byte, and also as a Haskell literal via print c. That's the
same as putStrLn (show c).

Let's look at the output:

$ runhaskell tempfile.hs

Welcome to tempfile.hs

I have a temporary file at /tmp/mytemp8572.txt

My initial position is 0

Writing one line containing 22 bytes: [1,2,3,4,5,6,7,8,9,10]
After writing, my new position is 23

The file content is:

[1,2,3,4,5,6,7,8,9,10]

Which could be expressed as this Haskell literal:
"[1,2,3,4,5,6,7,8,9,10]\n"

Every time you run this program, your temporary file name should be slightly different
since it contains a randomly-generated component. Looking at this output, there are a
few questions that might occur to you:

1. Why is your position 23 after writing a line with 22 bytes?
2. Why is there an empty line after the file content display?
3. Why is there a \n at the end of the Haskell literal display?
You might be able to guess that the answers to all three questions are related. See if you

can work out the answers for a moment. If you need some help, here are the explana-
tions:

1. That's because we used hPutStrLn instead of hPutStr to write the data. hPutStrLn
always terminates the line by writing a \n at the end, which didn't appear in temp
data.

2. We used putStrLn c to display the file contents c. Because the data was written
originally with hPutStrLn, c ends with the newline character, and putStrLn adds a
second newline character. The result is a blank line.

" hGetContents will be discussed in “Lazy I/O
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3. The \n is the newline character from the original hPutStrLn.

As a final note, the byte counts may be different on some operating systems. Windows,
for instance, uses the two-byte sequence \r\n as the end-of-line marker, so you may see
differences on that platform.

Lazy I/0

So far in this chapter, you've seen examples of fairly traditional I/O. Each line, or block
of data, is requested individually and processed individually.

Haskell has another approach available to you as well. Since Haskell is a lazy language,
meaning that any given piece of data is only evaluated when its value must be known,
there are some novel ways of approaching I/O.

hGetContents

One novel way to approach I/O is the hGetContents function. hGetContents has the
type Handle -> I0 String. The String it returns represents all of the data in the file
given by the Handle.*

In a strictly-evaluated language, using such a function is often a bad idea. It may be fine
to read the entire contents of a 2KB file, but if you try to read the entire contents of a
500GB file, you are likely to crash due to lack of RAM to store all that data. In these
languages, you would traditionally use mechanisms such as loops to process the file's
entire data.

But hGetContents is different. The String it returns is evaluated lazily. At the moment
you call hGetContents, nothing is actually read. Data is only read from the Handle as the
elements (characters) of the list are processed. As elements of the String are no longer
used, Haskell's garbage collector automatically frees that memory. All of this happens
completely transparently to you. And since you have what looks like—and, really, is
—a pure String, you can pass it to pure (non-IO) code.

Let's take a quick look at an example. Back in “Working With Files and Handles, you
saw an imperative program that converted the entire content of a file to uppercase. Its
imperative algorithm was similar to what you'd see in many other languages. Here now
is the much simpler algorithm that exploits lazy evaluation:

-- file: cho7/toupper-lazyi.hs
import System.IO
import Data.Char(toUpper)

main :: I0 ()

T There is also a shortcut function getContents that operates on standard input.

¥ More precisely, it is the entire data from the current position of the file pointer to the end of the file.
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main = do
inh <- openFile "input.txt" ReadMode
outh <- openFile "output.txt" WriteMode
inpStr <- hGetContents inh
let result = processData inpStr
hPutStr outh result
hClose inh
hClose outh

processData :: String -> String
processData = map toUpper

Notice that hGetContents handled all of the reading for us. Also, take a look at process
Data. It's a pure function since it has no side effects and always returns the same result
each time it is called. It has no need to know—and no way to tell—that its input is
being read lazily from a file in this case. It can work perfectly well with a 20-character

literal or a 500GB data dump on disk.

You can even verify that with ghci:

ghci> :load toupper-lazyi.hs

[1 of 1] Compiling Main ( toupper-lazyi.hs, interpreted )

Ok, modules loaded: Main.

ghci> processData "Hello, there! How are you?"
"HELLO, THERE! HOW ARE YOU?"

ghci> :type processData

processData :: String -> String

ghci> :type processData "Hello!"

processData "Hello!" :: String

If we had tried to hang on to inpStr in the above example, past the one
place where it was used (the call to processData), the program would

have lost its memory efficiency. That's because the compiler would have

been forced to keep inpStr's value in memory for future use. Here it
knows that inpStr will never be reused, and frees the memory as soon
as it is done with it. Just remember: memory is only freed after its last

use.

This program was a bit verbose to make it clear that there was pure code in use. Here's

a bit more concise version, which we will build on in the next examples:

-- file: cho7/toupper-lazy2.hs
import System.IO
import Data.Char(toUpper)

main = do
inh <- openFile "input.txt" ReadMode
outh <- openFile "output.txt" WriteMode
inpStr <- hGetContents inh
hPutStr outh (map toUpper inpStr)
hClose inh
hClose outh
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You are not required to ever consume all the data from the input file when using
hGetContents. Whenever the Haskell system determines that the entire string hGetCon
tents returned can be garbage collected —which means it will never again be used—
the file is closed for you automatically. The same principle applies to data read from
the file. Whenever a given piece of data will never again be needed, the Haskell envi-
ronment releases the memory it was stored within. Strictly speaking, we wouldn't have
to call hClose at all in this example program. However, it is still a good practice to get
into, as later changes to a program could make the call to hClose important.

When using hGetContents, it is important to remember that even though
% you may never again explicitly reference Handle directly in the rest of the
program, you must not close the Handle until you have finished con-
suming its results via hGetContents. Doing so would cause you to miss
on some or all of the file's data. Since Haskell is lazy, you generally can

assume that you have consumed input only after you have output the
result of the computations involving the input.

readFile and writeFile

Haskell programmers use hGetContents as a filter quite often. They read from one file,
do something to the data, and write the result out elsewhere. This is so common that
there are some shortcuts for doing it. readFile and writeFile are shortcuts for working
with files as strings. They handle all the details of opening files, closing files, reading
data, and writing data. readFile uses hGetContents internally.

Can you guess the Haskell types of these functions? Let's check with ghci:

ghci> :type readFile

readFile :: FilePath -> IO String

ghci> :type writeFile

writeFile :: FilePath -> String -> I0 ()

Now, here's an example program that uses readFile and writeFile:

-- file: cho7/toupper-lazy3.hs
import Data.Char(toUpper)

main = do
inpStr <- readFile "input.txt"
writeFile "output.txt" (map toUpper inpStr)

Look at that—the guts of the program take up only two lines! readFile returned a lazy
String, which we stored in inpStr. We then took that, processed it, and passed it to
writeFile for writing.

Neither readFile nor writeFile ever provide a Handle for you to work with, so there is
nothing to ever hClose. readFile uses hGetContents internally, and the underlying Han
dle will be closed when the returned String is garbage-collected or all the input has
been consumed. writeFile will close its underlying Handle when the entire String sup-
plied to it has been written.
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A Word On Lazy Output

By now, you should understand how lazy input works in Haskell. But what about
laziness during output?

As you know, nothing in Haskell is evaluated before its value is needed. Since functions
such as writeFile and putStr write out the entire String passed to them, that entire
String must be evaluated. So you are guaranteed that the argument to putStr will be
evaluated in full. 8

But what does that mean for laziness of the input? In the examples above, will the call
to putStr or writeFile force the entire input string to be loaded into memory at once,
just to be written out?

The answer is no. putStr (and all the similar output functions) write out data as it
becomes available. They also have no need for keeping around data already written, so
as long as nothing else in the program needs it, the memory can be freed immediately.
In a sense, you can think of the String between readFile and writeFile as a pipe linking
the two. Data goes in one end, is transformed some way, and flows back out the other.

You can verify this yourself by generating a large input.txt for toupper-lazy3.hs. It
may take a bit to process, but you should see a constant—and low—memory usage
while it is being processed.

interact

Youlearned thatreadFile and writeFile address the common situation of reading from
one file, making a conversion, and writing to a different file. There's a situation that's
even more common than that: reading from standard input, making a conversion, and
writing the result to standard output. For that situation, there is a function called
interact. The type of interact is (String -> String) -> IO (). That is, it takes one
argument: a function of type String -> String. That function is passed the result of
getContents—that is, standard input read lazily. The result of that function is sent to
standard output.

We can convert our example program to operate on standard input and standard output
by using interact. Here's one way to do that:

-- file: cho7/toupper-lazy4.hs
import Data.Char(toUpper)

main = interact (map toUpper)

Look at that—one line of code to achieve our transformation! To achieve the same
effect as with the previous examples, you could run this one like this:

§ Excepting /O errors such as a full disk, of course.
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$ runghc toupper-lazy4.hs < input.txt > output.txt

Or, if you'd like to see the output printed to the screen, you could type:

$ runghc toupper-lazy4.hs < input.txt

If you want to see that Haskell output truly does write out chunks of data as soon as
they are received, run runghc toupper-lazy4.hs without any other command-line pa-
rameters. You should see each character echoed back out as soon as you type it, but in
uppercase. Buffering may change this behavior; see “Buffering later in this chapter for
more on buffering. If you see each line echoed as soon as you type it, or even nothing
at all for awhile, buffering is causing this behavior.

You can also write simple interactive programs using interact. Let's start with a simple
example: adding a line of text before the uppercase output.

-- file: cho7/toupper-lazys.hs
import Data.Char (toUpper)

main = interact (map toUpper . (++) "Your data, in uppercase, is:\n\n")

W

If the use of the . operator is confusing, you might wish to refer to
“Code reuse through composition.

Here we add a string at the beginning of the output. Can you spot the problem, though?
Since we're calling map on the result of (++), that header itself will appear in uppercase.
We can fix that in this way:

-- file: cho7/toupper-lazy6.hs
import Data.Char(toUpper)

main = interact ((++) "Your data, in uppercase, is:\n\n" .
map toUpper)

This moved the header outside of the map.

Filters with interact

Another common use of interact is filtering. Let's say that you want to write a program
that reads a file and prints out every line that contains the character "a". Here's how
you might do that with interact:

-- file: cho7/filter.hs
main = interact (unlines . filter (elem 'a') . lines)
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This may have introduced three functions that you aren't familiar with yet. Let's inspect
their types with ghci:

ghci> :type lines

lines :: String -> [String]

ghci> :type unlines

unlines :: [String] -> String

ghci> :type elem

elem :: (Eq a) => a -> [a] -> Bool
Can you guess what these functions do just by looking at their types? If not, you can
find them explained in “Warming up: portably splitting lines of text and “Special string-
handling functions. You'll frequently see lines and unlines used with I/O. Finally,
elem takes a element and a list and returns True if that element occurs anywhere in the
list.

Try running this over our standard example input:

$ runghc filter.hs < input.txt
I like Haskell
Haskell is great

Sure enough, you got back the two lines that contain an "a". Lazy filters are a powerful
way to use Haskell. When you think about it, a filter—such as the standard Unix pro-
gram grep—sounds a lot like a function. It takes some input, applies some computation,
and generates a predictable output.

The 10 Monad

You've seen a number of examples of I/O in Haskell by this point. Let's take a moment
to step back and think about how I/O relates to the broader Haskell language.

Since Haskell is a pure language, if you give a certain function a specific argument, the
function will return the same result every time you give it that argument. Moreover,
the function will not change anything about the program's overall state.

You may be wondering, then, how I/O fits into this picture. Surely if you want to read
a line of input from the keyboard, the function to read input can't possibly return the
same result every time it is run, right? Moreover, I/O is all about changing state. I/O
could cause pixels on a terminal to light up, to cause paper to start coming out of a
printer, or even to cause a package to be shipped from a warehouse on a different
continent. I/O doesn't just change the state of a program. You can think of I/O as
changing the state of the world.
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Actions

Most languages do not make a distinction between a pure function and an impure one.
Haskell has functions in the mathematical sense: they are purely computations which
cannot be altered by anything external. Moreover, the computation can be performed
at any time—or even never, if its result is never needed.

Clearly, then, we need some other tool to work with I/O. That tool in Haskell is called
actions. Actions resemble functions. They do nothing when they are defined, but per-
form some task when they are invoked. I/O actions are defined within the IO monad.
Monads are a powerful way of chaining functions together purely and are covered in
Chapter 14. It's not necessary to understand monads in order to understand I/O. Just
understand that the result type of actions is "tagged" with 1O. Let's take a look at some
types:

ghci> :type putStrln

putStrln :: String -> I0 ()

ghci> :type getline

getline :: IO String

The type of putStrLn is just like any other function. The function takes one parameter
and returns an I0 (). This I0 () is the action. You can store and pass actions in pure
code if you wish, though this isn't frequently done. An action doesn't do anything until
it is invoked. Let's look at an example of this:

-- file: cho7/actions.hs
str2action :: String -> I0 ()
str2action input = putStrLn ("Data:

" ++ input)
list2actions :: [String] -> [I0 ()]
list2actions = map str2action

numbers :: [Int]
numbers = [1..10]

strings :: [String]
strings = map show numbers

actions :: [I0 ()]
actions = list2actions strings

printitall :: I0 ()
printitall = runall actions

-- Take a list of actions, and execute each of them in turn.
runall :: [I0 ()] -> I0 ()
runall [] = return ()
runall (firstelem:remainingelems) =
do firstelem
runall remainingelems

main = do str2action "Start of the program"
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printitall
str2action "Done!"

str2action is a function that takes one parameter and returns an I0 (). As you can see
at the end of main, you could use this directly in another action and it will print out a
line right away. Or, you can store—but not execute—the action from pure code. You
can see an example of that in list2actions—we use map over str2action and return a
list of actions, just like we would with other pure data. You can see that everything up
through printitall is built up with pure tools.

Although we define printitall, it doesn't get executed until its action is evaluated
somewhere else. Notice in main how we use str2action as an I/O action to be executed,
but earlier we used it outside of the /O monad and assembled results into a list.

You could think of it this way: every statement, except let, in a do block must yield an
I[/O action which will be executed.

The call to printitall finally executes all those actions. Actually, since Haskell is lazy,
the actions aren't generated until here either.

When you run the program, your output will look like this:

Data: Start of the program
Data:
Data:
Data:
Data:
Data:
Data:
Data:
Data:
Data:
Data: 10

Data: Done!

PO oo~y A~ WN R

We can actually write this in a much more compact way. Consider this revision of the
example:
-- file: cho7/actions2.hs

str2message :: String -> String
str2message input = "Data: " ++ input

str2action :: String -> I0 ()
str2action = putStrln . str2message

numbers :: [Int]
numbers = [1..10]

main = do str2action "Start of the program”
mapM_ (str2action . show) numbers
str2action "Done!"
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Notice in str2action the use of the standard function composition operator. In main,
there's a call to mapM_. This function is similar to map. It takes a function and a list. The
function supplied to mapM_ is an I/O action that is executed for every item in the list.
mapM_ throws out the result of the function, though you can use mapM to return a list of
I/O results if you want them. Take a look at their types:

ghci> :type mapM

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

ghci> :type mapM_

mapM_ :: (Monad m) => (a -> m b) -> [a] -> m ()

These functions actually work for more than just I/O; they work for any
Monad. For now, wherever you see "M", just think "IO". Also, functions
s that end with an underscore typically discard their result.

Why a mapM when we already have map? Because map is a pure function that returns a
list. It doesn't—and can't—actually execute actions directly. mapM is a utility that lives
in the 10 monad and thus can actually execute the actions.l

Going back to main, mapM_ applies (str2action . show) to every element in numbers.
show converts each number to a String and str2action converts each String to an ac-
tion. mapM_ combines these individual actions into one big action that prints out lines.

Sequencing

do blocks are actually shortcut notations for joining together actions. There are two
operators that you can use instead of do blocks: >> and >>=. Let's look at their types in
ghi:

ghci> :type (>>)

(>>) :: (Monad m) =>ma ->mb->mb

ghci> :type (>>=)

(>>=) :: (Monad m) =>ma -> (a->mb) ->mb
The >> operator sequences two actions together: the first action is performed, then the
second. The result of the computation is the result of the second action. The result of
the first action is thrown away. This is similar to simply having a line in a do block. You
might write putStrLn "line 1" >> putStrLn "line 2" to test this out. It will print out
two lines, discard the result from the first putStrLn, and provide the result from the
second.

The >>= operator runs an action, then passes its result to a function that returns an
action. That second action is run as well, and the result of the entire expression is the

I Technically speaking, mapM combines a bunch of separate I/O actions into one big action. The separate actions
are executed when the big action is.
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result of that second action. As an example, you could write getlLine >>= putStrln,
which would read a line from the keyboard and then display it back out.

Let's re-write one of our examples to avoid do blocks. Remember this example from the
start of the chapter?

-- file: cho7/basicio.hs

main = do
putStrLn "Greetings! What is your name?"
inpStr <- getline
putStrLn $ "Welcome to Haskell, " ++ inpStr ++

Let's write that without a do block:

-- file: cho7/basicio-nodo.hs
main =
putStrLn "Greetings! What is your name?" >>
getLine >>=
(\inpStr -> putStrLn $ "Welcome to Haskell, " ++ inpStr ++

wyn

The Haskell compiler internally performans a translation just like this when you define
a do block.

W

Forgetting how to use \ (lambda expressions)? See “Anonymous
(lambda) functions.

The True Nature of Return

Earlier in this chapter, we mentioned that return is probably not what it looks like.
Many languages have a keyword named return that aborts execution of a function
immediately and returns a value to the caller.

The Haskell return function is quite different. In Haskell, return is used to wrap data
in a monad. When speaking about I/O, return is used to take pure data and bring it
into the IO monad.

Now, why would we want to do that? Remember that anything whose result depends
on I/O must be within the IO monad. So if we are writing a function that performs I/
O, then a pure computation, we will need to use return to make this pure computation
the proper return value of the function. Otherwise, a type error would occur. Here's an
example:

-- file: cho7/returni.hs
import Data.Char(toUpper)

isGreen :: I0 Bool
isGreen =
do putStrLn "Is green your favorite color?"
inpStr <- getline
return ((toUpper . head $ inpStr) == 'Y")
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We have a pure computation that yields a Bool. That computation is passed to
return, which puts it into the IO monad. Since it is the last value in the do block, it
becomes the return value of isGreen, but this is not because we used the return function.

Here's a version of the same program with the pure computation broken out into a
separate function. This helps keep the pure code separate, and can also make the intent
more clear.

-- file: cho7/return2.hs
import Data.Char(toUpper)

isYes :: String -> Bool
isYes inpStr = (toUpper . head $ inpStr) == 'Y’

isGreen :: IO Bool
isGreen =
do putStrLn "Is green your favorite color?"
inpStr <- getlLine
return (isYes inpStr)

Finally, here's a contrived example to show that return truly does not have to occur at
the end of a do block. In practice, it usually is, but it need not be so.

-- file: cho7/return3.hs
returnTest :: I0 ()

returnTest =
do one <- return 1
let two = 2

putStrLn $ show (one + two)

Notice that we used <- in combination with return, but let in combination with the
simple literal. That's because we needed both values to be pure in order to add them,
and <- pulls things out of monads, effectively reversing the effect of return. Run this in
ghci and you'll see 3 displayed, as expected.

Is Haskell Really Imperative?

These do blocks may look a lot like an imperative language. After all, you're giving
commands to run in sequence most of the time.

But Haskell remains a lazy language at its core. While it is necessary to sequence actions
forI/O at times, this is done using tools that are part of Haskell already. Haskell achieves
a nice separation of I/O from the rest of the language through the IO monad as well.

Side Effects with Lazy 1/0

Earlier in this chapter, you read about hGetContents. We explained that the String it
returns can be used in pure code.
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We need to get a bit more specific about what side effects are. When we say Haskell
has no side-effects, what exactly does that mean?

Ata certain level, side-effects are always possible. A poorly-written loop, even if written
in pure code, could cause the system's RAM to be exhausted and the machine to crash.
Or it could cause data to be swapped to disk.

When we speak of no side effects, we mean that pure code in Haskell can't run com-
mands that trigger side effects. Pure functions can't modify a global variable, request
I[/O, or run a command to take down a system.

When you have a String from hGetContents that is passed to a pure function, the func-
tion has no idea that this String is backed by a disk file. It will behave just as it always
would, but processing that String may cause the environment to issue I/O commands.
The pure function isn't issuing them; they are happening as a result of the processing
the pure function is doing, just as with the example of swapping RAM to disk.

In some cases, you may need more control over exactly when your I/O occurs. Perhaps
you are reading data interactively from the user, or via a pipe from another program,
and need to communicate directly with the user. In those cases, hGetContents will
probably not be appropriate.

Buffering

The I/O subsystem is one of the slowest parts of a modern computer. Completing a
write to disk can take thousands of times as long as a write to memory. A write over
the network can be hundreds or thousands of times slower yet. Even if your operation
doesn't directly communicate with the disk—perhaps because the data is cached—I/
O still involves a system call, which slows things down by itself.

For this reason, modern operating systems and programming languages both provide
tools to help programs perform better where I/O is concerned. The operating system
typically performs caching—storing frequently-used pieces of data in memory for faster
access.

Programming languages typically perform buffering. This means that they may request
one large chunk of data from the operating system, even if the code underneath is
processing data one character at a time. By doing this, they can achieve remarkable
performance gains because each request for I/O to the operating system carries a pro-
cessing cost. Buffering allows us to read the same amount of data with far fewer I/O
requests.

Haskell, too, provides buffering in its I/O system. In many cases, it is even on by default.
Up till now, we have pretended it isn't there. Haskell usually is good about picking a
good default buffering mode. But this default is rarely the fastest. If you have speed-
critical I/O code, changing buffering could make a significant impact on your program.
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Buffering Modes

There are three different buffering modes in Haskell. They are defined as the Buffer
Mode type: NoBuffering, LineBuffering, and BlockBuffering.

NoBuffering does just what it sounds like—no buffering. Data read via functions like
hGetLine will be read from the OS one character at a time. Data written will be written
immediately, and also often will be written one character at a time. For this reason,
NoBuffering is usually a very poor performer and not suitable for general-purpose use.

LineBuffering causes the output buffer to be written whenever the newline character
is output, or whenever it gets too large. On input, it will usually attempt to read what-
ever data is available in chunks until it first sees the newline character. When reading
from the terminal, it should return data immediately after each press of Enter. It is often
a reasonable default.

BlockBuffering causes Haskell to read or write data in fixed-size chunks when possible.
This is the best performer when processing large amounts of data in batch, even if that
data is line-oriented. However, it is unusable for interactive programs because it will
block input until a full block is read. BlockBuffering accepts one parameter of type
Maybe: if Nothing, it will use an implementation-defined buffer size. Or, you can use a
setting such as Just 4096 to set the buffer to 4096 bytes.

The default buffering mode is dependent upon the operating system and Haskell im-
plementation. You can ask the system for the current buffering mode by calling hGet
Buffering. The current mode can be set with hSetBuffering, which accepts a Handle
and BufferMode. As an example, you can say hSetBuffering stdin (BlockBuffering
Nothing).

Flushing The Buffer

For any type of buffering, you may sometimes want to force Haskell to write out any
data that has been saved up in the buffer. There are a few times when this will happen
automatically: a call to hClose, for instance. Sometimes you may want to instead call
hFlush, which will force any pending data to be written immediately. This could be
useful when the Handle is a network socket and you want the data to be transmitted
immediately, or when you want to make the data on disk available to other programs
that might be reading it concurrently.

Reading Command-Line Arguments

Many command-line programs are interested in the parameters passed on the com-
mand line. System.Environment.getArgs returns I0 [String] listing each argument.
This is the same as argv in C, starting with argv[1]. The program name (argv[0] in C)
is available from System.Environment.getProgName.
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The System.Console.GetOpt module provides some tools for parsing command-line
options. If you have a program with complex options, you may find it useful. You can
find an example of its use in “Command line parsing.

Environment Variables

If you need to read environment variables, you can use one of two functions in Sys
tem.Environment: getEnv or getEnvironment. getEnv looks for a specific variable and
raises an exception if it doesn't exist. getEnvironment returns the whole environment as
a [(String, String)], and then you can use functions such as lookup to find the envi-
ronment entry you want.

Setting environment variables is not defined in a cross-platform way in Haskell. If you
are on a POSIX platform such as Linux, you can use putEnv or setEnv from the Sys
tem.Posix.Env module. Environment setting is not defined for Windows.
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CHAPTER 8
Efficient file processing, regular
expressions, and file name matching

Efficient file processing

This simple microbenchmark reads a text file full of numbers, and prints their sum.

-- file: cho8/SumFile.hs
main = do
contents <- getContents
print (sumFile contents)
where sumFile = sum . map read . words

Although the String type is the default used for reading and writing files, it is not effi-
cient, so a simple program like this will perform badly.

A String is represented as a list of Char values; each element of a list is allocated indi-
vidually, and has some book-keeping overhead. These factors affect the memory con-
sumption and performance of a program that must read or write text or binary data.
On simple benchmarks like this, even programs written in interpreted languages such
as Python can outperform Haskell code that uses String by an order of magnitude.

The bytestring library provides a fast, cheap alternative to the String type. Code written
with bytestring can often match or exceed the performance and memory footprint of
C, while maintaining Haskell's expressivity and conciseness.

The library supplies two modules. Each defines functions that are nearly drop-in re-
placements for their String counterparts.

* The Data.ByteString module defines a strict type named ByteString. This repre-
sents a string of binary or text data in a single array.

* The Data.ByteString.Lazy module provides a lazy type, also named ByteString.
This represents a string of data as a list of chunks, arrays of up to 64KB in size.

Each ByteString type performs better under particular circumstances. For streaming a
large quantity (hundreds of megabytes to terabytes) of data, the lazy ByteString type is
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usually best. Its chunk size is tuned to be friendly to a modern CPU's L1 cache, and a
garbage collector can quickly discard chunks of streamed data that are no longer being
used.

The strict ByteString type performs best for applications that are less concerned with
memory footprint, or that need to access data randomly.

Binary 1/0 and qualified imports

Let's develop a small function to illustrate some of the ByteString API. We will deter-
mine if a file is an ELF object file: this is the format used for executables on almost all
modern Unix-like systems.

This is a simple matter of looking at the first four bytes in the file, and seeing if they
match a specific sequence of bytes. A byte sequence that identifies a file's type is often
known as a magic number.

-- file: cho8/ElfMagic.hs
import qualified Data.ByteString.lLazy as L

hasElfMagic :: L.ByteString -> Bool
hasElfMagic content = L.take 4 content == elfMagic
where elfMagic = L.pack [0x7f, 0x45, Ox4c, 0x46]

We import the ByteString modules using Haskell's qualified import syntax, the import
qualified that we see above. This lets us refer to a module with a name of our choosing.

For instance, when we want to refer to the lazy ByteString module's take function, we
must write L.take, since we imported the module under the name L. If we are not
explicit about which version of e.g. take we want, the compiler will report an error.

We will always use qualified import syntax with the ByteString modules, because they
provide many functions that have the same names as Prelude functions.

N

Qualified imports make it easy to switch between ByteString types. All

you should need to do is modify an import declaration at the top of your

* Qlar source file; the rest of your code will probably not need any changes.

" You can thus handily benchmark the two types, to see which is best
suited to your application's needs

Whether or not we use qualified imports, we can always use the entire name of a module
to identify something unambiguously. For instance, both
Data.ByteString.Lazy.length and L.length identify the same function, as do
Prelude.sum and sum.

The lazy and strict ByteString modules are intended for binary I/O. The Haskell data
type for representing bytes is Word8; if we need to refer to it by name, we import it
from the Data.Word module.
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The L.pack function takes a list of Word8 values, and packs them into a lazy Byte-
String. (The L.unpack function performs the reverse conversion.) Our hasElfMagic
function simply compares the first four bytes of a ByteString against a magic number.

We are writing in classic Haskell style, where our hasElfMagic function does not per-
form I/O. Here is the function that uses it on a file.
-- file: cho8/ElfMagic.hs
isElfFile :: FilePath -> IO Bool
isElfFile path = do
content <- L.readFile path
return (hastElfMagic content)

The L.readFile function is the lazy ByteString equivalent of readFile. It operates lazily,
reading the file as data is demanded. It is also efficient, reading chunks of up to 64KB
at once. The lazy ByteString is a good choice for our task: since we only need to read
at most the first four bytes of the file, we can safely use this function on a file of any size.

Text1/0

For convenience, the bytestring library provides two other modules with limited text
[/O capabilities, Data.ByteString.Char8 and Data.ByteString.Lazy.Char8. These ex-
pose individual string elements as Char instead of Word8.

The functions in these modules only work with byte-sized Char values,
g so they are only suitable for use with ASCII and some European char-

acter sets. Values above 255 are truncated.

The character-oriented bytestring modules provide useful functions for text process-
ing. Here is a file that contains monthly stock prices for a well-known Internet company
from mid-2008.
ghci> putStr =<< readFile "prices.csv"
Date,Open,High, Low,Close,Volume,Adj Close
2008-08-01,20.09,20.12,19.53,19.80,19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500, 20. 66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41

How can we find the highest closing price from a series of entries like this? Closing
prices are in the fourth comma-separated column. This function obtains a closing price
from one line of data.

-- file: cho8/HighestClose.hs
import qualified Data.ByteString.lLazy.Char8 as L

closing = readPrice . (!!4) . L.split ','

Since this function is written in point-free style, we read from right to left. The
L.split function splits a lazy ByteString into a list of them, every time it finds a matching
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character. The (!!) operator retrieves the kth element of a list. Our readPrice function
turns a string representing a fractional price into a whole number.

-- file: cho8/HighestClose.hs
readPrice :: L.ByteString -> Maybe Int
readPrice str =
case L.readInt str of
Nothing -> Nothing
Just (dollars,rest) ->
case L.readInt (L.tail rest) of
Nothing -> Nothing
Just (cents,more) ->
Just (dollars * 100 + cents)

We use the L.readInt function, which parses an integer. It returns both the integer and
the remainder of the string once a run of digits is consumed. Our definition is slightly
complicated by L.readInt returning Nothing if parsing fails.

Our function for finding the highest closing price is straightforward.

-- file: cho8/HighestClose.hs
highestClose = maximum . (Nothing:) . map closing . L.lines

highestCloseFrom path = do
contents <- L.readFile path
print (highestClose contents)

We use one trick to work around the fact that we cannot supply an empty list to the
maximum function.

ghci> maximum [3,6,2,9]

9

ghci> maximum []

*** Exception: Prelude.maximum: empty list

Since we do not want our code to throw an exception if we have no stock data, the
(Nothing:) expression ensures that the list of Maybe Int values that we supply to
maximum will never be empty.

ghci> maximum [Nothing, Just 1]
Just 1

ghci> maximum [Nothing]

Nothing

Does our function work?

ghci> :load HighestClose

[1 of 1] Compiling Main ( HighestClose.hs, interpreted )
Ok, modules loaded: Main.

ghci> highestCloseFrom "prices.csv"

Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Just 2741

Since we have separated our I/O from our logic, we can test the no-data case without
having to create an empty file.
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ghci> highestClose L.empty
Nothing

File name matching

Many systems-oriented programming languages provide library routines that let us
match a file name against a pattern, or that will give a list of files that match the pattern.
In other languages, this function is often named fnmatch.) Although Haskell's standard
library generally has good systems programming facilities, it doesn't provide these kinds
of pattern matching functions. We'll take this as an opportunity to develop our own.

The kinds of patterns we'll be dealing with are commonly referred to as glob patterns
(the term we'll use), wild card patterns, or shell-style patterns. They have just a few
simple rules. You probably already know them, but we'll quickly recap here.

* Matching a string against a pattern starts at the beginning of the string, and finishes
at the end.

* Most literal characters match themselves. For example, the text foo in a pattern
will match foo, and only foo, in an input string.

* The * (asterisk) character means “match anything”; it will match any text, includ-
ing the empty string. For instance, the pattern foo* will match any string that begins
with foo, such as foo itself, foobar, or foo.c. The pattern quux*.c will match any
string that begins with quux and ends in .c, such as quuxbaz.c.

* The ? (question mark) character matches any single character. The pattern
pic??.jpg will match names like picaa.jpg or pico1.jpg.

* A [ (open square bracket) character begins a character class, which is ended by
a ]. Its meaning is “match any character in this class”. A character class can be
negated by following the opening [ with a !, so that it means “match any character
not in this class”.

As a shorthand, a character followed by a - (dash), followed by another character,
denotes a range: “match any character within this set”.

Character classes have an added subtlety; they can't be empty. The first character
after the opening [ or [! is part of the class, so we can write a class containing
the ] character as [ ]Jaeiou]. The pattern pic[0-9].[pP][nN][gG] will match a name
consisting of the string pic, followed by a single digit, followed by any capitalization
of the strig .png.

While Haskell doesn't provide a way to match glob patterns among its standard libra-
ries, it provides a good regular expression matching library. Glob patterns are nothing
more than cut-down regular expressions with slightly different syntax. It's easy to con-
vert glob patterns into regular expressions, but to do so, we must first understand how
to use regular expressions in Haskell.
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Regular expressions in Haskell

In this section, we will be assume that you are already familiar with regular expressions
by way of some other language, such as Python, Perl, or Java'.

For brevity, we will abbreviate “regular expression” as regexp from here on.

Rather than introduce regexps as something new, we will focus on what's different
about regexp handling in Haskell, compared to other languages. Haskell's regular ex-
pression matching libraries are a lot more expressive than those of other languages, so
there's plenty to talk about.

To begin our exploration of the regexp libraries, the only module we'll need to work
with is Text.Regex.Posix. As usual, the most convenient way to explore this module is
by interacting with it via ghci.

ghci> :module +Text.Regex.Posix

The only function that we're likely to need for normal use is the regexp matching func-
tion, an infix operator named (=~) (borrowed from Perl). The first hurdle to overcome
is that Haskell's regexp libraries make heavy use of polymorphism. As a result, the type
signature of the (=~) operator is difficult to understand, so we will not explain it here.

The =~ operator uses typeclasses for both of its arguments, and also for its return type.
The first argument (on the left of the =) is the text to match; the second (on the right)
is the regular expression to match against. We can pass either a String or a ByteString
as either argument.

The many types of result

The =~ operator is polymorphic in its return type, so the Haskell compiler needs some
way to know what type of result we would like. In real code, it may be able to infer the
right type, due to the way we subsequently use the result. But such cues are often lacking
when we're exploring with ghci. If we omit a specific type for the result, we'll get an
error from the interpreter, as it does not have enough information to successfuly infer
the result type.

When ghci can't infer the target type, we tell it what we'd like the type to be. If we want
a result of type Bool, we'll get a pass/fail answer.

ghci> "my left foot" =~ "foo" :: Bool

Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
True

ghci> "your right hand" =~ "bar" :: Bool

" If you are not acquainted with regular expressions, we recommend Jeffrey Friedl's book Mastering Regular
Expressions.
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False

ghci> "your right hand" =~ "(hand|foot)" :: Bool
True

In the bowels of the regexp libraries, there's a typeclass named RegexContext that de-
scribes how a target type should behave; the base library defines many instances of
this typeclass for us. The Bool type is an instance of this typeclass, so we get back a
usable result. Another such instance is Int, which gives us a count of the number of
times the regexp matches.

ghci> "a star called henry" =~ "planet" :: Int
0

ghci> "honorificabilitudinitatibus" =~ "[aeiou]" :: Int
13

If we ask for a String result, we'll get the first substring that matches, or an empty string
if nothing matches.

ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: String

hig
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: String

nn

Another valid type of result is [String], which returns a list of all matching strings.

ghci> "I, B. Ionsonii, uurit a lift'd batch" =~ "(uu|ii)" :: [String]
["ii","u"
ghci> "hi ludi, F. Baconis nati, tuiti orbi" =~ "Shakespeare" :: [String]

(]

Watch out for String results

'”?‘ If you want a result that's a plain String, beware. Since (=~) returns an
empty string to signify “no match”, this poses an obvious difficulty if
the empty string could also be a valid match for the regexp. If such a
case arises, you should use a different return type instead, such as
[String].

That's about it for “simple” result types, but we're not by any means finished. Before
we continue, let's use a single pattern for our remaining examples. We can define this
pattern as a variable in ghci, to save a little typing.

ghci> let pat = "(foo[a-z]*bar|quux)"

We can obtain quite a lot of information about the context in which a match occurs.
If we ask for a (String, String, String) tuple, we'll get back the text before the first match,
the text of that match, and the text that follows it.

ghci> "before foodiebar after" =~ pat :: (String,String,String)
("before ","foodiebar"," after")
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If the match fails, the entire text is returned as the “before” element of the tuple, with
the other two elements left empty.

ghci> "no match here"

[ITRTIT] u)

("no match here","",

~ pat :: (String,String,String)

Asking for a four-element tuple gives us a fourth element that's a list of all groups in
the pattern that matched.

ghci> "before foodiebar after" =~ pat :: (String,String,String,[String])
("before ","foodiebar"," after",["foodiebar"])

We can get numeric information about matches, too. A pair of Ints gives us the starting
offset of the first match, and its length. If we ask for a list of these pairs, we'll get this
information for all matches.

ghci> "before foodiebar after" =~ pat :: (Int,Int)

(7,9)
ghci> "i foobarbar a quux" =~ pat :: [(Int,Int)]

[(2,9),(14,4)]
A failed match is represented by the value -1 as the first element of the tuple (the match
offset) if we've asked for a single tuple, or an empty list if we've asked for a list of tuples.

ghci> "eleemosynary" =~ pat :: (Int,Int)

('1:0)
ghci> "mondegreen" =~ pat :: [(Int,Int)]

(]

This is not a comprehensive list of built-in instances of the RegexContext typeclass. For
a complete list, see the documentation for the Text.Regex.Base.Context module.

This ability to make a function polymorphic in its result type is an unusual feature for
a statically typed language.

More about regular expressions

Mixing and matching string types

As we noted earlier, the =~ operator uses typeclasses for its argument types and its return
type. We can use either String or strict ByteString values for both the regular expression
and the text to match against.

ghci> :module +Data.ByteString.Char8

ghci> :type pack "foo"

pack "foo" :: ByteString

We can then try using different combinations of String and ByteString.

ghci> pack "foo" =~ "bar" :: Bool
False

ghci> "foo" =~ pack "bar" :: Int
0
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ghci> pack "foo" =~ pack "o" :: [(Int, Int)]
[(1,1),(2,1)]

However, we need to be aware that if we want a string value in the result of a match,
the text we're matching against must be the same type of string. Let's see what this
means in practice.

ghci> pack "good food" =~ ".ood" :: [ByteString]
["good", "food" ]

In the above example, we've used the pack to turn a String into a ByteString. The type
checker accepts this because ByteString appears in the result type. But if we try getting
a String out, that won't work.

ghci> "good food" =~ ".ood" :: [ByteString]

<interactive>:1:0:
No instance for (Text.Regex.Base.RegexLike.RegexContext
Regex [Char] [ByteString])
arising from a use of “=~' at <interactive>:1:0-20
Possible fix:
add an instance declaration for
(Text.Regex.Base.RegexLike.RegexContext Regex [Char] [ByteString])

In the expression: "good food" =~ ".ood" :: [ByteString]
In the definition of “it':
it = "good food" =~ ".ood" :: [ByteString]

We can easily fix this problem by making the string types of the left hand side and the
result match once again.

ghci> "good food" =~ ".o0d" :: [String]
["good","food"]

This restriction does not apply to the type of the regexp we're matching against. It can
be either a String or ByteString, unconstrained by the other types in use.

Other things you should know

When you look through Haskell library documentation, you'll see several regexp-rela-
ted modules. The modules under Text.Regex.Base define the common API adhered to
by all of the other regexp modules. It's possible to have multiple implementations of
the regexp APl installed at one time. At the time of writing, GHC is bundled with one
implementation, Text.Regex.Posix. As its name suggests, this package provides POSIX
regexp semantics.
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w Perl and POSIX regular expressions

' f\i' If you're coming to Haskell from a language like Perl, Python, or Java,
and you've used regular expressions in one of those languages, you
should be aware that the POSIX regexps handled by the
Text.Regex.Posix module are different in some significant ways from
Perl-style regexps. Here are a few of the more notable differences.

Perl regexp engines perform left-biased matching when matching alter-
natives, whereas POSIX engines choose the greediest match. What this
means is that given a regexp of (foo|fo*) and a text string of foooooo, a
Perl-style engine will give a match of foo (the leftmost match), while a
POSIX engine will match the entire string (the greediest match).

POSIX regexps have less uniform syntax than Perl-style regexps. They
also lack a number of capabilities provided by Perl-style regexps, such
as zero-width assertions and control over greedy matching.

Other Haskell regexp packages are available for download from Hackage. Some provide
better performance than the current POSIX engine (e.g. regex-tdfa); others provide the
Perl-style matching that most programmers are now familiar with (e.g. regex-pcre). All
follow the standard API that we have covered in this section.

Translating a glob pattern into a reqular expression

Now that we've seen the myriad of ways to match text against regular expressions, let's
turn our attention back to glob patterns. We want to write a function that will take a
glob pattern and return its representation as a regular expression. Both glob patterns
and regexps are text strings, so the type that our function ought to have seems clear.

-- file: cho8/GlobRegex.hs
module GlobRegex

globToRegex
, matchesGlob
) where

import Text.Regex.Posix ((=~))
globToRegex :: String -> String

The regular expression that we generate must be anchored, so that it starts matching
from the beginning of a string and finishes at the end.

-- file: cho8/GlobRegex.hs
globToRegex cs = '"' : globToRegex' cs ++ "$"

Recall that the String is just a synonym for [Char], a list of Chars. The : operator puts
a value (the » character in this case) onto the front of a list, where the list is the value
returned by the yet-to-be-seen globToRegex' function.
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Using a value before defining it

[ f\t' Haskell does not require that a value or function be declared or defined
in a source file before it's used. It's perfectly normal for a definition to
come after the first place it's used. The Haskell compiler doesn't care
about ordering at this level. This grants us the flexibility to structure our
code in the manner that makes most logical sense to us, rather than
follow an order that makes the compiler writer's life easiest.

Haskell module writers often use this flexibility to put “more impor-
tant” code earlier in a source file, relegating “plumbing” to later. This
is exactly how we are presenting the globToRegex function and its helpers
here.

With the regular expression rooted, the globToRegex' function will do the bulk of the
translation work. We'll use the convenience of Haskell's pattern matching to enumerate
each of the cases we'll need to cover.

-- file: cho8/GlobRegex.hs
globToRegex' :: String -> String

globToRegex' "" = ""

globToRegex' ('*':cs) = ".*" ++ globToRegex' cs

globToRegex' ('?':cs) = '.' : globToRegex' cs

globToRegex' ('[':'!':c:cs) = "[*" ++ c : charClass cs
globToRegex' ('[':c:cs) ='[" : c : charClass cs
globToRegex' ('[':)) = error "unterminated character class"

globToRegex' (c:cs) = escape c ++ globToRegex' cs

Our first clause stipulates that if we hit the end of our glob pattern (by which time we'll
be looking at the empty string), we return $, the regular expression symbol for “match
end-of-line”. Following this is a series of clauses that switch our pattern from glob
syntax to regexp syntax. The last clause passes every other character through, possibly
escaping it first.

The escape function ensures that the regexp engine will not interpret certain characters
as pieces of regular expression syntax.

-- file: cho8/GlobRegex.hs

escape :: Char -> String

escape ¢ | ¢ “elem’ regexChars = "\\' : [c]

| otherwise = [c]
where regexChars = "\\+()"$.{}]|"

The charClass helper function only checks that a character class is correctly terminated.
[t passes its input through unmodified until it hits a ], when it hands control back to
globToRegex".
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-- file: cho8/GlobRegex.hs

charClass :: String -> String

charClass (']':cs) = "]' : globToRegex' cs

charClass (c:cs) = c : charClass cs

charClass [] = error "unterminated character class"”

Now that we've finished defining globToRegex and its helpers, let's load it into ghci and
try it out.

ghci> :load GlobRegex.hs

[1 of 1] Compiling GlobRegex ( GlobRegex.hs, interpreted )
Ok, modules loaded: GlobRegex.

ghci> :module +Text.Regex.Posix

ghci> globToRegex "f??.c"

Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Loading package regex-base-0.72.0.1 ... linking ... done.
Loading package regex-posix-0.72.0.2 ... linking ... done.
"N

Sure enough, thatlooks like a reasonable regexp. Can we use it to match against a string?

ghci> "foo.c" =~ globToRegex "f??.c" :: Bool

True

ghci> "test.c" =~ globToRegex "t[ea]s*" :: Bool
True

ghci> "taste.txt" =~ globToRegex "t[ea]s*" :: Bool
True

It works! Now let's play around a little with ghci. We can create a temporary definition
for fnmatch and try it out.
ghci> let fnmatch pat name = name =~ globToRegex pat :: Bool
ghci> :type fnmatch
fnmatch :: (Text.Regex.Base.RegexLike.RegexLike Regex source1) =>
String -> sourcel -> Bool

ghci> fnmatch "d*" “"myname"
False

The name fnmatch doesn't really have the “Haskell nature”, though. By far the most
common Haskell style is for functions to have descriptive, “camel cased” names. Camel
casing concatenates words, capitalising all but possibly the first word. For instance, the
words “file name matches” would become the name fileNameMatches. The name
“camel case” comes from the “humps” introduced by the capital letters. In our library,
we'll give this function the name matchesGlob.

-- file: cho8/GlobRegex.hs

matchesGlob :: FilePath -> String -> Bool
name “matchesGlob™ pat = name =~ globToRegex pat

You may have noticed that most of the names that we have used for variables so far
have been short. As a rule of thumb, descriptive variable names are more useful in longer
function definitions, as they aid readability. For a two-line function, a long variable
name has less value.

208 | Chapter8: Efficient file processing, regular expressions, and file name matching



Exercises

1. Use ghci to explore what happens if you pass a malformed pattern, such as [, to
globToRegex. Write a small function that calls globToRegex, and pass it a mal-
formed pattern. What happens?

2. While filesystems on Unix are usually sensitive to case (e.g. “G” vs. “g”) in file
names, Windows filesystems are not. Add a parameter to the globToRegex and
matchesGlob functions that allows control over case sensitive matching.

An important aside: writing lazy functions

In an imperative language, the globToRegex' function is one that we'd usually express
as a loop. For example, Python's standard fnmatch module includes a function named
translate that does exactly the same job as our globToRegex function. It's written as a
loop.

If you've been exposed to functional programming through a language such as Scheme
or ML, you've probably had drilled into your head the notion that “the way to emulate
a loop is via tail recursion”.

Looking at the globToRegex' function, we can see that it is not tail recursive. To see
why, examine its final clause again (several of its other clauses are structured similarly).

-- file: cho8/GlobRegex.hs
globToRegex' (c:cs) = escape ¢ ++ globToRegex' cs

It applies itself recursively, and the result of the recursive application is used as a pa-
rameter to the (++) function. Since the recursive application isn't the last thing the
function does, globToRegex" is not tail recursive.

Why is our definition of this function not tail recursive? The answer lies with Haskell's
non-strict evaluation strategy. Before we start talking about that, let's quickly talk about
why, in a traditional language, we'd try to avoid this kind of recursive definition. Here
is a simpler definition, of the (++) operator. It is recursivem, but not tail recursive.

-- file: cho8/append.hs
(++) :: [a] -> [a] -> [a]

(x:xs) ++ ys = x : (Xs ++ ys)

[] ++ ys = ys
In a strict language, if we evaluate "foo" ++ "bar", the entire list is constructed, then
returned. Non-strict evaluation defers much of the work until it is needed.

If we demand an element of the expression "foo" ++ "bar", the first pattern of the
function's definition matches, and we return the expression x : (xs ++ ys). Because
the (:) constructor is non-strict, the evaluation of xs ++ ys can be deferred: we generate
more elements of the result at whatever rate they are demanded. When we generate
more of the result, we will no longer be using x, so the garbage collector can reclaim it.
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Since we generate elements of the result on demand, and do not hold onto parts that
we are done with, the compiler can evaluate our code in constant space.

Making use of our pattern matcher

It's all very well to have a function that can match glob patterns, but we'd like to be
able to put this to practical use. On Unix-like systems, the glob function returns the
names of all files and directories that match a given glob pattern. Let's build a similar
function in Haskell. Following the Haskell norm of descriptive naming, we'll call our
function namesMatching.

-- file: cho8/Glob.hs
module Glob (namesMatching) where

We specify that namesMatching is the only name that users of our Glob module will be
able to see.

This function will obviously have to manipulate filesystem paths a lot, splicing and
joining them as it goes. We'll need to use a few previously unfamiliar modules along
the way.

The System.Directory module provides standard functions for working with directories
and their contents.
-- file: cho8/Glob.hs

import System.Directory (doesDirectoryExist, doesFileExist,
getCurrentDirectory, getDirectoryContents)

The System.FilePath module abstracts the details of an operating system's path name
conventions. The (</>) function joins two path components.

ghci> :m +System.FilePath

ghci> "foo" </> "bar"

Loading package filepath-1.1.0.0 ... linking ... done.
"foo/bar"

The name of the dropTrailingPathSeparator function is perfectly descriptive.
ghci> dropTrailingPathSeparator "foo/"
"foo"

The splitFileName function splits a path at the last slash.

ghci> splitFileName "foo/bar/Quux.hs"

("foo/bar/","Quux.hs")

ghci> splitFileName "zippity"

(", "zippity”)
Using System.FilePath together with the System.Directory module, we can write a
portable namesMatching function that will run on both Unix-like and Windows systems.

-- file: cho8/Glob.hs
import System.FilePath (dropTrailingPathSeparator, splitFileName, (</>))
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In this module, we'll be emulating a “for” loop; getting our first taste of exception
handling in Haskell; and of course using the matchesGlob function we just wrote.

-- file: cho08/Glob.hs

import Control.Exception (handle)
import Control.Monad (forM)
import GlobRegex (matchesGlob)

Since directories and files live in the “real world” of activities that have effects, our
globbing function will have to have I0 in its result type.

If the string we're passed contains no pattern characters, we simply check that the given
name exists in the filesystem. (Notice that we use Haskell's function guard syntax here
to write a nice tidy definition. An “if” would do, but isn't as aesthetically pleasing.)

-- file: cho8/Glob.hs
isPattern :: String -> Bool
isPattern = any (“elem™ "[*?")

namesMatching pat
| not (isPattern pat) = do
exists <- doesNameExist pat
return (if exists then [pat] else [])

The name doesNameExist refers to a function that we will define shortly.

What if the string is a glob pattern? Our function definition continues.

-- file: cho08/Glob.hs
| otherwise = do
case splitFileName pat of
("", baseName) -> do
curDir <- getCurrentDirectory
listMatches curDir baseName
(dirName, baseName) -> do
dirs <- if isPattern dirName
then namesMatching (dropTrailingPathSeparator dirName)
else return [dirName]
let listDir = if isPattern baseName
then listMatches
else listPlain
pathNames <- forM dirs $ \dir -> do
baseNames <- listDir dir baseName
return (map (dir </>) baseNames)
return (concat pathNames)

We use splitFileName to split the string into a pair of “everything but the final name”
and “the final name”. If the first element is empty, we're looking for a pattern in the
current directory. Otherwise, we must check the directory name and see if it contains
patterns. If it does not, we create a singleton list of the directory name. If it contains a
pattern, we list all of the matching directories.
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Things to watch out for

N
063" The System.FilePath module can be a little tricky. Above is a case in
point; the splitFileName function leaves a trailing slash on the end of
the directory name that it returns.

ghci> :module +System.FilePath

ghci> splitFileName "foo/bar"

Loading package filepath-1.1.0.0 ... linking ... done.

("foo/","bar")
If we didn't remember (or know enough) to remove that slash, we'd
recurse endlessly in namesMatching, because of the following behaviour
of splitFileName.

ghci> splitFileName "foo/"
("foo/","")

You can guess what happened to us that led us to add this note!

Finally, we collect all matches in every directory, giving us a list of lists, and concatenate
them into a single list of names.

The unfamiliar forM function above acts a little like a “for” loop: it maps its second
argument (an action) over its first (a list), and returns the list of results.

We have a few loose ends to clean up. The first is the definition of the doesNameExist
function, used above. The System.Directory module doesn't let us check to see if a
name exists in the filesystem. It forces us to decide whether we want to check for a file
or a directory. This API is ungainly, so we roll the two checks into a single function. In
the name of performance, we make the check for a file first, since files are far more
common than directories.

-- file: cho08/Glob.hs
doesNameExist :: FilePath -> IO Bool

doesNameExist name = do
fileExists <- doesFileExist name
if fileExists
then return True
else doesDirectoryExist name

We have two other functions to define, each of which returns a list of names in a
directory. The listMatches function returns a list of all files matching the given glob
pattern in a directory.

-- file: cho8/Glob.hs
listMatches :: FilePath -> String -> IO [String]
listMatches dirName pat = do
dirName' <- if null dirName
then getCurrentDirectory
else return dirName
handle (const (return [])) $ do
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names <- getDirectoryContents dirName'
let names' = if isHidden pat

then filter isHidden names

else filter (not . isHidden) names
return (filter (“matchesGlob® pat) names')

isHidden ('.": ) = True
isHidden _ = False
The listPlain function returns either an empty or singleton list, depending on whether
the single name it's passed exists.
-- file: cho08/Glob.hs
listPlain :: FilePath -> String -> I0 [String]
listPlain dirName baseName = do
exists <- if null baseName
then doesDirectoryExist dirName

else doesNameExist (dirName </> baseName)
return (if exists then [baseName] else [])

If we look closely at the definition of listMatches above, we'll see a call to a function
named handle. Earlier on, we imported this from the Control.Exception module; as
that import implies, this gives us our first taste of exception handling in Haskell. Let's
drop into ghci and see what we can find out.

ghci> :module +Control.Exception

ghci> :type handle
handle :: (Exception -> I0 a) -> I0 a -> I0 a

This is telling us that handle takes two arguments. The first is a function that is passed
an exception value, and can have side effects (see the IO type in its return value); this
is the handler to run if an exception is thrown. The second argument is the code that
might throw an exception.

As for the exception handler, the type of the handle constrains it to return the same
type of value as the body of code that threw the exception. So its choices are to either
throw an exception or, as in our case, return a list of Strings.

The const function takes two arguments; it always returns its first argument, no matter
what its second argument is.

ghci> :type const

const :: a ->b ->a

ghci> :type return []

return [] :: (Monad m) => m [a]

ghci> :type handle (const (return []))

handle (const (return [])) :: IO [a] -> IO [a]

We use const to write an exception handler that ignores the exception it is passed.
Instead, it causes our code to return an empty list if we catch an exception.

We won't have anything more to say about exception handling here. There's plenty
more to cover, though, so we'll be returning to the subject of exceptions in chapter
Chapter 19.
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Exercises

1. Although we've gone to some lengths to write a portable namesMatching function,
the function uses our case sensitive globToRegex function. Find a way to modify
namesMatching to be case sensitive on Unix, and case insensitive on Windows,
without modifying its type signature.

Hint: consider reading the documentation for System.FilePath to look for a var-
iable that tells us whether we're running on a Unix-like system, or on Windows.

2. If you're on a Unix-like system, look through the documentation for the Sys
tem.Posix.Files module, and see if you can find a replacement for the
doesNameExist function.

3. The * wild card only matches names within a single directory. Many shells have
an extended wild card syntax, **, that matches names recursively in all directo-
ries. For example, **.c would mean “match a name ending in . c in this directory
or any subdirectory at any depth”. Implement matching on ** wildcards.

Handling errors through API design

It's not necessarily a disaster if our globToRegex is passed a malformed pattern. Perhaps
a user mistyped a pattern, in which case we'd like to be able to report a meaningful
error message.

Calling the error function when this kind of problem occurs can be a drastic response
(exploring its consequences was the focus of exercise Q: 1). The error throws an ex-
ception. Pure Haskell code cannot deal with exceptions, so control is going to rocket
out of our pure code into the nearest caller that lives in I0 and has an appropriate
exception handler installed. If no such handler is installed, the Haskell runtime will
default to terminating our program (or print a nasty error message, in ghci).

So calling error is a little like pulling the handle of a fighter plane's ejection seat. We're
bailing out of a catastrophic situation that we can't deal with gracefully, and there's
likely to be a lot of flaming wreckage strewn about by the time we hit the ground.

We've established that error is for disasters, but we're still using it in globToRegex. In
that case, malformed input should be rejected, but not turned into a big deal. What
would be a better way to handle this?

Haskell's type system and libraries to the rescue! We can encode the possibility of failure
in the type signature of globToRegex, using the predefined Either type.

-- file: cho8/GlobRegexEither.hs

type GlobError = String

globToRegex :: String -> Either GlobError String
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A value returned by globToRegex will now be either Left "an error message" or Right
"a valid regexp". Thisreturn type forces our callers to deal with the possibility of error.
(You'll find that this use of the Either type occurs frequently in Haskell code.)

Exercises

1. Write a version of globToRegex that uses the type signature above.

2. Modify the type signature of namesMatching so that it encodes the possibility of a
bad pattern, and make it use your rewritten globToRegex function.

)

You may find the amount of work involved to be surprisingly
large. Don't worry; we will introduce more concise and sophis-
W ticated ways of dealing with errors in later chapters.

Putting our code to work

The namesMatching function isn't very exciting by itself, but it's a useful building block.
Combine it with a few more functions, and we can start to do interesting things.

Here's one such example. Let's define a renameWith function that, instead of simply
renaming a file, applies a function to the file's name, and renames the file to whatever
that function returns.

-- file: cho8/Useful.hs

import System.FilePath (replaceExtension)

import System.Directory (doesFileExist, renameDirectory, renameFile)
import Glob (namesMatching)

renameWith :: (FilePath -> FilePath)
-> FilePath
-> I0 FilePath

renameWith f path = do
let path' = f path
rename path path'
return path’

Once again, we work around the ungainly file/directory split in System.Directory with
a helper function.

-- file: cho8/Useful.hs
rename :: FilePath -> FilePath -> I0 ()

rename old new = do
isFile <- doesFileExist old
let f = if isFile then renameFile else renameDirectory
f old new
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The System.FilePath module provides many useful functions for manipulating file
names. These functions mesh nicely with our renameWith and namesMatching functions,
so that we can quickly use them to create functions with complex behaviour. As an
example, this terse function changes the file name suffixing convention for C++ source
files.

-- file: cho8/Useful.hs

ccaepp =
mapM (renameWith (flip replaceExtension

"CPp")) =<< namesMatching II*'CCH

The cc2cpp function uses a few functions we'll be seeing over and over. The flip func-
tion takes another function as argument, and swaps the order of its arguments (inspect
the type of replaceExtension in ghci to see why). The =<< function feeds the result of
the action on its right side to the action on its left.

Exercises

1. Glob patterns are simple enough to interpret that it's easy to write a matcher
directly in Haskell, rather than going through the regexp machinery. Give ita try.
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CHAPTER 9
I/0 case study: a library for searching
the filesystem

The problem of “I know I have this file, but I don't know where it is” has been around
for as long as computers have had hierarchical filesystems. The fifth edition of Unix
introduced the find command in 1974; it remains indispensable today. The state of the
art has come a long way: modern operating systems ship with advanced document
indexing and search capabilities.

There's still a valuable place for find-like capability in the programmer's toolbox. In this
chapter, we'll develop a library that gives us many of find's capabilities, without leaving
Haskell. We'll explore several different approaches to writing this library, each with
different strengths.

The find command

If you don't use a Unix-like operating system, or you're not a heavy shell user, it's quite
possible you may not have heard of find. Given a list of directories, it searches each one
recursively and prints the name of every entry that matches an expression.

» o«

Individual expressions can take such forms as “name matches this glob pattern”, “entry
is a plain file”, “last modified before this date”, and many more. They can be stitched
together into more complex expressions using “and” and “or” operators.

Starting simple: recursively listing a directory

Before we plunge into designing our library, let's solve a few smaller problems. Our
first problem is to recursively list the contents of a directory and its subdirectories.

-- file: cho9/RecursiveContents.hs

module RecursiveContents (getRecursiveContents) where

import Control.Monad (forM)
import System.Directory (doesDirectoryExist, getDirectoryContents)
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import System.FilePath ((</>))
getRecursiveContents :: FilePath -> I0 [FilePath]

getRecursiveContents topdir = do
names <- getDirectoryContents topdir
let properNames = filter (‘notElem” [".",
paths <- forM properNames $ \name -> do
let path = topdir </> name
isDirectory <- doesDirectoryExist path
if isDirectory
then getRecursiveContents path
else return [path]
return (concat paths)

.."1) names

The filter expression ensures that a listing for a single directory won't contain the
special directory names . or .., which refer to the current and parent directory, re-
spectively. If we forgot to filter these out, we'd recurse endlessly.

We encountered forM in the previous chapter; it is mapM with its arguments flipped.

ghci> :m +Control.Monad

ghci> :type mapM

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]
ghci> :type forM
forM :: (Monad m)

> [a] -> (a -> m b) -> m [b]

The body of the loop checks to see whether the current entry is a directory. If it is, it
recursively calls getRecursiveContents to list that directory. Otherwise, it returns a sin-
gle-element list that is the name of the current entry. (Don't forget that the return
function has a unique meaning in Haskell: it wraps a value with the monad's type
constructor.)

Another thing worth pointing out is the use of the variable isDirectory. In an imperative
language such as Python, we'd normally write if os.path.isdir(path). However, the
doesDirectoryExist function is an action; its return type is IO Bool, not Bool. Since an
if expression requires an expression of type Bool, we have to use <- to get the Bool
result of the action out of its IO wrapper, so that we can use the plain, unwrapped
Bool in the if.

Each iteration of the loop body yields a list of names, so the result of forM here is IO
[[FilePath]]. We use concat to flatten it into a single list.

Revisiting anonymous and named functions

In “Anonymous (lambda) functions, we listed some reasons not to use anonymous
functions, and yet here we are, using one as the body of a loop. This is one of the most
common uses of anonymous functions in Haskell.
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We've already seen from their types that forM and mapM take functions as arguments.
Most loop bodies are blocks of code that only appear once in a program. Since we're
most likely to use a loop body in only one place, why give it a name?

Of course, it sometimes happens that we need to deploy exactly the same code in several
different loops. Rather than cutting and pasting the same anonymous function, it makes
sense in such cases to give a name to an existing anonymous function.

Why provide both mapM and forM?

It might seem a bit odd that there exist two functions that are identical but for the order
in which they accept their arguments. However, mapM and forM are convenient in dif-
ferent circumstances.

Consider our example above, using an anonymous function as a loop body. If we were
to use mapM instead of forM, we'd have to place the variable properNames after the body
of the function. In order to get the code to parse correctly, we'd have to wrap the entire
anonymous function in parentheses, or replace it with a named function that would
otherwise be unnecessary. Try it yourself: copy the code above, replacing forM with
mapM, and see what this does to the readability of the code.

By contrast, if the body of the loop was already a named function, and the list over
which we were looping was computed by a complicated expression, we'd have a good
case for using mapM instead.

The stylistic rule of thumb to follow here is to use whichever of mapM or forM lets you
write the tidiest code. If the loop body and the expression computing the data over
which you're looping are both short, it doesn't matter which you use. If the loop is
short, but the data is long, use mapM. If the loop is long, but the data short, use forM.
And if both are long, use a let or where clause to make one of them short. With just a
little practice, it will become obvious which of these approaches is best in every in-
stance.

A naive finding function

We can use our getRecursiveContents function as the basis for a simple-minded file
finder.

-- file: cho9/SimpleFinder.hs
import RecursiveContents (getRecursiveContents)

simpleFind :: (FilePath -> Bool) -> FilePath -> I0 [FilePath]

simpleFind p path = do
names <- getRecursiveContents path
return (filter p names)
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This function takes a predicate that we use to filter the names returned by
getRecursiveContents. Each name passed to the predicate is a complete path, so how
can we perform a common operation like “find all files ending in the extension .c”?

The System.FilePath module contains numerous invaluable functions that help us to
manipulate file names. In this case, we want takeExtension.

ghci> :m +System.FilePath

ghci> :type takeExtension

takeExtension :: FilePath -> String

ghci> takeExtension "foo/bar.c"
Loading package filepath-1.1.0.0 ... linking ... done.

"oen

ghci> takeExtension "quux"

nn

This gives us a simple matter of writing a function that takes a path, extracts its exten-
sion, and compares it with .c.

ghci> :load SimpleFinder

[1 of 2] Compiling RecursiveContents ( RecursiveContents.hs, interpreted )

[2 of 2] Compiling Main ( SimpleFinder.hs, interpreted )

Ok, modules loaded: RecursiveContents, Main.

ghci> :type simpleFind (\p -> takeExtension p == ".c")

simpleFind (\p -> takeExtension p == ".c") :: FilePath -> IO [FilePath]

While simpleFind works, it has a few glaring problems. The first is that the predicate
is not very expressive. It can only look at the name of a directory entry; it cannot, for
example, find out whether it's a file or a directory. This means that our attempt to use
simpleFind will list directories ending in .c as well as files with the same extension.

The second problem is that simpleFind gives us no control over how it traverses the
filesystem. To see why this is significant, consider the problem of searching for a source
file in a tree managed by the Subversion revision control system. Subversion maintains
a private .svn directory in every directory that it manages; each one contains many
subdirectories and files that are of no interest to us. While we can easily enough filter
out any path containing .svn, it's more efficient to simply avoid traversing these direc-
tories in the first place. For example, one of us has a Subversion source tree containing
45,000 files, 30,000 of which are stored in 1,200 different .svn directories. It's cheaper
to avoid traversing those 1,200 directories than to filter out the 30,000 files they contain.

Finally, simpleFind is strict, because it consists of a series of actions executed in the
IO monad. If we have a million files to traverse, we encounter a long delay, then receive
one huge result containing a million names. This is bad for both resource usage and
responsiveness. We might prefer a lazy stream of results delivered as they arrive.

In the sections that follow, we'll overcome each one of these problems.
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Predicates: from poverty to riches, while remaining pure

Our predicates can only look at file names. This excludes a wide variety of interesting
behaviours: for instance, what if we'd like to list files of greater than a given size?

An easy reaction to this is to reach for IO: instead of our predicate being of type FilePath
-> Bool, why don't we change it to FilePath -> 10 Bool? This would let us perform
arbitrary I/O as part of our predicate. As appealing as this might seem, it's also poten-
tially a problem: such a predicate could have arbitrary side effects, since a function with
return type IO a can have whatever side effects it pleases.

Let's enlist the type system in our quest to write more predictable, less buggy code: we'll
keep predicates pure by avoiding the taint of “IO”. This will ensure that they can't have
any nasty side effects. We'll feed them more information, too, so that they can gain the
expressiveness we want without also becoming potentially dangerous.

Haskell's portable System.Directory module provides a useful, albeit limited, set of file
metadata.

ghci> :m +System.Directory

* We can use doesFileExist and doesDirectoryExist to determine whether a direc-
tory entry is a file or a directory. There are not yet portable ways to query for other
file types that have become widely available in recent years, such as named pipes,
hard links and symbolic links.

ghci> :type doesFileExist
doesFileExist :: FilePath -> IO Bool

ghci> doesFileExist ".

Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package directory-1.0.0.1 ... linking ... done.
False

ghci> :type doesDirectoryExist
doesDirectoryExist :: FilePath -> IO Bool

ghci> doesDirectoryExist ".
True

* The getPermissions function lets us find out whether certain operations on a file
or directory are allowed.

ghci> :type getPermissions
getPermissions :: FilePath -> I0 Permissions
ghci> :info Permissions
data Permissions
= Permissions {readable :: Bool,
writable :: Bool,
executable :: Bool,
searchable :: Bool}
-- Defined in System.Directory
instance Eq Permissions -- Defined in System.Directory
instance Ord Permissions -- Defined in System.Directory
instance Read Permissions -- Defined in System.Directory
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instance Show Permissions -- Defined in System.Directory
ghci> getPermissions "."

Permissions {readable = True, writable = True, executable = False, searchable = True}

ghci> :type searchable

searchable :: Permissions -> Bool
ghci> searchable it

True

(If you cannot recall the special ghci variable it, take a look back at “First steps
with types.) A directory will be searchable if we have permission to list its contents;
files are never searchable.

* Finally, getModificationTime tells us when an entry was last modified.

ghci> :type getModificationTime

getModificationTime :: FilePath -> IO System.Time.ClockTime
ghci> getModificationTime "."

Sat Aug 23 22:28:16 PDT 2008

If we stick with portable, standard Haskell code, these functions are all we have at our
disposal. (We can also find a file's size using a small hack; see below.) They're also quite
enough to let usillustrate the principles we're interested in, without letting us get carried
away with an example that's too expansive. If you need to write more demanding code,
the System.Posix and System.Win32 module families provide much more detailed file
metadata for the two major modern computing platforms. There also exists a unix-
compat package on Hackage, which provides a Unix-like API on Windows.

How many pieces of data does our new, richer predicate need to see? Since we can find
out whether an entry is a file or a directory by looking at its Permissions, we don't need
to pass in the results of doesFileExist or doesDirectoryExist. We thus have four pieces
of data that a richer predicate needs to look at.

-- file: ch09/BetterPredicate.hs

import Control.Monad (filterM)

import System.Directory (Permissions(..), getModificationTime, getPermissions)
import System.Time (ClockTime(..))

import System.FilePath (takeExtension)

import Control.Exception (bracket, handle)

import System.IO (IOMode(..), hClose, hFileSize, openFile)

-- the function we wrote earlier
import RecursiveContents (getRecursiveContents)

type Predicate = FilePath -- path to directory entry
-> Permissions  -- permissions
-> Maybe Integer -- file size (Nothing if not file)
-> ClockTime -- last modified
-> Bool

Our Predicate type is just a synonym for a function of four arguments. It will save us a
little keyboard work and screen space.
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Notice that the return value of this predicate is Bool, not IO Bool: the predicate is pure,
and cannot perform I/O. With this type in hand, our more expressive finder function
is still quite trim.

-- file: ch09/BetterPredicate.hs

-- soon to be defined
getFileSize :: FilePath -> I0 (Maybe Integer)

betterFind :: Predicate -> FilePath -> IO [FilePath]

betterFind p path = getRecursiveContents path >>= filterM check
where check name = do
perms <- getPermissions name
size <- getFileSize name
modified <- getModificationTime name
return (p name perms size modified)

Let's walk through the code. We'll talk about getFileSize in some detail soon, so let's
skip over it for now.

We can't use filter to call our predicate p, as p's purity means it cannot do the I/O
needed to gather the metadata it requires.

This leads us to the unfamiliar function filterM. It behaves like the normal filter
function, but in this case it evaluates its predicate in the IO monad, allowing the pred-
icate to perform I/O.

ghci> :m +Control.Monad

ghci> :type filterM

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
Our check predicate is an I/O-capable wrapper for our pure predicate p. It does all the
“dirty” work of I/O on p's behalf, so that we can keep p incapable of unwanted side
effects. After gathering the metadata, check calls p, then uses return to wrap p's result
with I10.

Sizing a file safely

Although System.Directory doesn't let us find out how large a file is, we can use the
similarly portable System.I0 module to do this. It contains a function named
hFileSize, which returns the size in bytes of an open file. Here's a simple function that
wraps it.

-- file: ch09/BetterPredicate.hs
simpleFileSize :: FilePath -> IO Integer

simpleFileSize path = do
h <- openFile path ReadMode
size <- hFileSize h
hClose h
return size
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While this function works, it's not yet suitable for us to use. In betterFind, we call
getFileSize unconditionally on any directory entry; it should return Nothing if an entry
is not a plain file, or the size wrapped by Just otherwise. This function instead throws
an exception if an entry is not a plain file or could not be opened (perhaps due to
insufficient permissions), and returns the size unwrapped.

Here's a safer version of this function.

-- file: cho09/BetterPredicate.hs
saferFileSize :: FilePath -> IO (Maybe Integer)

saferFileSize path = handle (\_ -> return Nothing) $ do
h <- openFile path ReadMode
size <- hFileSize h
hClose h
return (Just size)

The body of the function is almost identical, save for the handle clause.

Our exception handler above ignores the exception it's passed, and returns Nothing.
The only change to the body that follows is that it wraps the file size with Just.

The saferFileSize function now has the correct type signature, and it won't throw any
exceptions. But it's still not completely well behaved. There are directory entries on
which openFile will succeed, but hFileSize will throw an exception. This can happen
with, for example, named pipes. Such an exception will be caught by handle, but our
call to hClose will never occur.

A Haskell implementation will automatically close the file handle when it notices that
the handle is no longer being used. That will not occur until the garbage collector runs,
and the delay until the next garbage collection pass is not predictable.

File handles are scarce resources. Their scarcity is enforced by the underlying operating
system. On Linux, for example, a process is by default only allowed to have 1024 files
open simultaneously.

It's not hard to imagine a scenario in which a program that called a version of
betterFind that used saferFileSize could crash due to betterFind exhausting the sup-
ply of open file handles before enough garbage file handles could be closed.

This is a particularly pernicious kind of bug: it has several aspects that combine to make
it incredibly difficult to track down. It will only be triggered if betterFind visits a suf-
ficiently large number of non-files to hit the process's limit on open file handles, and
then returns to a caller that tries to open another file before any of the accumulated
garbage file handles is closed.

To make matters worse, any subsequent error will be caused by data that is no longer
reachable from within the program, and has yet to be garbage collected. Such a bug is
thus dependent on the structure of the program, the contents of the filesystem, and
how close the current run of the program is to triggering the garbage collector.
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This sort of problem is easy to overlook during development, and when it later occurs
in the field (as these awkward problems always seem to do), it will be much harder to
diagnose.

Fortunately, we can avoid this kind of error very easily, while also making our function
shorter.

The acquire-use-release cycle

We need hClose to always be called if openFile succeeds. The Control.Exception mod-
ule provides the bracket function for exactly this purpose.

ghci> :type bracket

bracket :: I0 a -> (a -> I0 b) -> (a -> I0 c) -> I0 ¢
The bracket function takes three actions as arguments. The first action acquires a re-
source. The second releases the resource. The third runs in between, while the resource
is acquired; let's call this the “use” action. If the “acquire” action succeeds, the “re-
lease” action is always called. This guarantees that the resource will always be released.
The “use” and “release” actions are each passed the resource acquired by the “ac-
quire” action.

If an exception occurs while the “use” action is executing, bracket calls the “release”
action and rethrows the exception. If the “use” action succeeds, bracket calls the
“release” action, and returns the value returned by the “use” action.

We can now write a function that is completely safe: it will not throw exceptions;
neither will it accumulate garbage file handles that could cause spurious failures else-
where in our program.
-- file: cho9/BetterPredicate.hs
getFileSize path = handle (\_ -> return Nothing) $
bracket (openFile path ReadMode) hClose $ \h -> do

size <- hFileSize h
return (Just size)

Look closely at the arguments of bracket above. The first opens the file, and returns
the open file handle. The second closes the handle. The third simply calls hFileSize on
the handle and wraps the result in Just.

We need to use both bracket and handle for this function to operate correctly. The
former ensures that we don't accumulate garbage file handles, while the latter gets rid
of exceptions.

Exercises

1. Isthe order in which we call bracket and handle important? Why?
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A domain specific language for predicates

Let's take a stab at writing a predicate. Our predicate will check for a C++ source file
that is over 128KB in size.

-- file: ch09/BetterPredicate.hs

myTest path _ (Just size) _ =

takeExtension path == ".cpp" 8& size > 131072
myTest _ = False

This isn't especially pleasing. The predicate takes four arguments, always ignores two
of them, and requires two equations to define. Surely we can do better. Let's create
some code that will help us to write more concise predicates.

Sometimes, this kind of library is referred to as an embedded domain specific language:
we use our programming language's native facilities (hence embedded) to write code
that lets us solve some narrow problem (hence domain specific) particularly elegantly.

Our first step is to write a function that returns one of its arguments. This one extracts
the path from the arguments passed to a Predicate.

-- file: cho9/BetterPredicate.hs

pathP path _ _ _ = path
If we don't provide a type signature, a Haskell implementation will infer a very general
type for this function. This can later lead to error messages that are difficult to interpret,
so let's give pathP a type.

-- file: cho9/BetterPredicate.hs

type InfoP a = FilePath -- path to directory entry
-> Permissions -- permissions
-> Maybe Integer -- file size (Nothing if not file)
-> ClockTime -- last modified
->a

pathP :: InfoP FilePath

We've created a type synonym that we can use as shorthand for writing other, similarly
structured functions. Our type synonym accepts a type parameter so that we can specify
different result types.

-- file: ch09/BetterPredicate.hs

sizeP :: InfoP Integer

sizeP _ _ (Just size) _ = size
sizeP _ _ Nothing _=-1

(We're being a little sneaky here, and returning a size of -1 for entries that are not files,
or that we couldn't open.)

In fact, a quick glance shows that the Predicate type that we defined near the beginning
of this chapter is the same type as InfoP Bool. (We could thus legitimately get rid of the
Predicate type.)
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What use are pathP and sizeP? With a little more glue, we can use them in a predicate
(the P suffix on each name is intended to suggest “predicate”). This is where things start
to get interesting.

-- file: ch09/BetterPredicate.hs

equalP :: (Eq a) => InfoP a -> a -> InfoP Bool

equalP f k =\wxyz->fwxyz-==
The type signature of equalP deserves a little attention. It takes an InfoP a, which is
compatible with both pathP and sizeP. It takes an a. And it returns an InfoP Bool, which
we already observed is a synonym for Predicate. In other words, equalP constructs a
predicate.

The equalP function works by returning an anonymous function. That one takes the
arguments accepted by a predicate, passes them to f, and compares the result to k.

This equation for equalP emphasises the fact that we think of it as taking two arguments.
Since Haskell curries all functions, writing equalP in this way is not actually necessary.
We can omit the anonymous function and rely on currying to work on our behalf,
letting us write a function that behaves identically.

-- file: cho9/BetterPredicate.hs

equalP' :: (Eq a) => InfoP a -> a -> InfoP Bool
equalP' fkwxyz=Ffwxyz-==k

Before we continue with our explorations, let's load our module into ghci.

ghci> :load BetterPredicate

[1 of 2] Compiling RecursiveContents ( RecursiveContents.hs, interpreted )
[2 of 2] Compiling Main ( BetterPredicate.hs, interpreted )
0k, modules loaded: RecursiveContents, Main.

Let's see if a simple predicate constructed from these functions will work.

ghci> :type betterFind (sizeP “equalP® 1024)
betterFind (sizeP ‘equalP® 1024) :: FilePath -> I0 [FilePath]

Notice that we're not actually calling betterFind, we're merely making sure that our
expression typechecks. We now have a more expressive way to list all files that are
exactly some size. Our success gives us enough confidence to continue.

Avoiding boilerplate with lifting

Besides equalP, we'd like to be able to write other binary functions. We'd prefer not to
write a complete definition of each one, because that seems unnecessarily verbose.

To address this, let's put Haskell's powers of abstraction to use. We'll take the definition
of equalP, and instead of calling (==) directly, we'll pass in as another argument the
binary function that we want to call.

-- file: cho9/BetterPredicate.hs

1iftP :: (a -> b -> ¢) -> InfoP a -> b -> InfoP ¢
liftPqfkwxyz=Ffwxyz'q k
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greaterP, lesserP :: (Ord a) => InfoP a -> a -> InfoP Bool
greaterP = 1iftP ()
lesserP = 1iftP (<)

This act of taking a function, such as (>), and transforming it into another function
that operates in a different context, here greaterP, is referred to as lifting it into that
context. This explains the presence of 1ift in the function's name. Lifting lets us reuse
code and reduce boilerplate. We'll be using it a lot, in different guises, throughout the
rest of this book.

When we lift a function, we'll often refer to its original and new versions as unlifted and
lifted, respectively.

By the way, our placement of q (the function to lift) as the first argument to 1iftP was
quite deliberate. This made it possible for us to write such concise definitions of
greaterP and lesserP. Partial application makes finding the “best” order for arguments
a more important part of API design in Haskell than in other languages. In languages
without partial application, argument ordering is a matter of taste and convention. Put
an argument in the wrong place in Haskell, however, and we lose the concision that
partial application gives.

We can recover some of that conciseness via combinators. For instance, forM was not
added to the Control.Monad module until 2007. Prior to that, people wrote flip mapM
instead.

ghci> :m +Control.Monad

ghci> :t mapM

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

ghci> :t forM

forM :: (Monad m) => [a] -> (a -> m b) -> m [b]

ghci> :t flip mapM

flip mapM :: (Monad m) => [a] -> (a -> m b) -> m [b]

Gluing predicates together

If we want to combine predicates, we can of course follow the obvious path of doing

so by hand.

-- file: ch09/BetterPredicate.hs
simpleAndP :: InfoP Bool -> InfoP Bool -> InfoP Bool
simpleAndP f gwxyz=fTwxyz8gwxyz

Now that we know about lifting, it becomes more natural to reduce the amount of code
we must write by lifting our existing Boolean operators.
-- file: ch09/BetterPredicate.hs

1iftP2 :: (a -> b -> ¢) -> InfoP a -> InfoP b -> InfoP ¢
liftP2 gfgwxyz=fwxyz'q gwxyz

andP = liftP2 (&8)
orP = 1iftP2 (|])
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Notice that 1iftP2 is very similar to our earlier 1iftP. In fact, it's more general, because
we can write 1iftP in terms of 1iftp2.

-- file: ch09/BetterPredicate.hs
constP :: a -> InfoP a
constP k _ =k

liftP' g f kwxyz=fwxyz 'q constPkwxyz

B
)

Combinators

N
06" In Haskell, we refer to functions that take other functions as arguments,
returning new functions, as combinators.

Now that we have some helper functions in place, we can return to the myTest function
we defined earlier.

-- file: cho09/BetterPredicate.hs

myTest path _ (Just size) =

takeExtension path == ".cpp" 8& size > 131072
myTest = False

How will this function look if we write it using our new combinators?

-- file: cho9/BetterPredicate.hs
liftPath :: (FilePath -> a) -> InfoP a
liftPath fw = =fw

myTest2 = (liftPath takeExtension “equalP™ ".cpp") “andP®
(sizeP “greaterP’ 131072)

We've added one final combinator, 1iftPath, since manipulating file names is such a
common activity.

Defining and using new operators

We can take our domain specific language further by defining new infix operators.

-- file: cho9/BetterPredicate.hs
(==?) = equalP

(88?) = andP

(>?) = greaterP

myTest3 = (liftPath takeExtension ==? ".cpp") 8&? (sizeP >? 131072)

We chose names like (==?) for the lifted functions specifically for their visual similarity
to their unlifted counterparts.

The parentheses in our definition above are necessary, because we haven't told Haskell
about the precedence or associativity of our new operators. The language specifies that
operators without fixity declarations should be treated as infixl 9, i.e. they are eval-
uated from left to right at the highest precedence level. If we were to omit the paren-
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theses, the expression would thus be parsed as (((liftPath takeExtension) ==?
".cpp") 8&8? sizeP) >? 131072, which is horribly wrong.

We can respond by writing fixity declarations for our new operators. Our first step is
to find out what the fixities of the unlifted operators are, so that we can mimic them.
ghci> :info ==
class Eq a where
(==) :: a ->a -> Bool

-- Defined in GHC.Base
infix 4 ==
ghci> :info &&
(&) :: Bool -> Bool -> Bool -- Defined in GHC.Base
infixr 3 &&
ghci> :info >
class (Eq a) => Ord a where

(>) :: a->a -> Bool

-- Defined in GHC.Base
infix 4 >
With these in hand, we can now write a parenthesis-free expression that will be parsed
identically to myTest3.
-- file: cho9/BetterPredicate.hs
infix 4 ==?

infixr 3 &&?
infix 4 >?

myTest4 = liftPath takeExtension ==? ".cpp" &&? sizeP >? 131072

Controlling traversal

When traversing the filesystem, we'd like to give ourselves more control over which
directories we enter, and when. An easy way in which we can allow this is to pass in a
function that takes a list of subdirectories of a given directory, and returns another list.
This list can have elements removed, or it can be ordered differently than the original
list, or both. The simplest such control function is id, which will return its input list
unmodified.

For variety, we're going to change a few aspects of our representation here. Instead of
an elaborate function type InfoP a, we'll use a normal algebraic data type to represent
substantially the same information.

-- file: ch09/ControlledVisit.hs
data Info = Info {
infoPath :: FilePath
, infoPerms :: Maybe Permissions
, infoSize :: Maybe Integer
, infoModTime :: Maybe ClockTime
} deriving (Eq, Ord, Show)
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getInfo :: FilePath -> IO Info

We're using record syntax to give ourselves “free” accessor functions, such as
infoPath. The type of our traverse function is simple, as we proposed above. To obtain
Info about a file or directory, we call the getInfo action.

-- file: ch09/ControlledVisit.hs
traverse :: ([Info] -> [Info]) -> FilePath -> I0 [Info]

The definition of traverse is short, but dense.

-- file: ch09/ControlledVisit.hs
traverse order path = do
names <- getUsefulContents path
contents <- mapM getInfo (path : map (path </>) names)
1iftM concat $ forM (order contents) $ \info -> do
if isDirectory info 8% infoPath info /= path
then traverse order (infoPath info)
else return [info]

getUsefulContents :: FilePath -> I0 [String]
getUsefulContents path = do

names <- getDirectoryContents path

return (filter (“notElem™ [".", ".."]) names)

isDirectory :: Info -> Bool
isDirectory = maybe False searchable . infoPerms

While we're not introducing any new techniques here, this is one of the densest function
definitions we've yet encountered. Let's walk through it almost line by line, explaining
what is going on. The first couple of lines hold no mystery, as they're almost verbatim
copies of code we've already seen.

Things begin to get interesting when we assign to the variable contents. Let's read this
line from right to left. We already know that names is a list of directory entries. We make
sure that the current directory is prepended to every element of the list, and included
in the list itself. We use mapM to apply getInfo to the resulting paths.

The line that follows is even more dense. Again reading from right to left, we see that
the last element of the line begins the definition of an anonymous function that con-
tinues to the end of the paragraph. Given one Info value, this function either visits a
directory recursively (there's an extra check to make sure we don't visit path again), or
returns that value as a single-element list (to match the result type of traverse).

We use forM to apply this function to each element of the list of Info values returned
by order, the user-supplied traversal control function.

At the beginning of the line, we use the technique of lifting in a new context. The
1iftM function takes a regular function, concat, and lifts it into the IO monad. In other
words, it takes the result of forM (of type IO [[Info]]) out of the IO monad, applies
concat to it (yielding a result of type [Info], which is what we need), and puts the result
back into the IO monad.
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Finally, we mustn't forget to define our getInfo function.

-- file: ch09/ControlledVisit.hs
maybeIO :: I0 a -> IO (Maybe a)
maybeIO act = handle (\_ -> return Nothing) (Just “1liftM’ act)

getInfo path = do

perms <- maybeIO (getPermissions path)

size <- maybeIO (bracket (openFile path ReadMode) hClose hFileSize)
modified <- maybeIO (getModificationTime path)

return (Info path perms size modified)

The only noteworthy thing here is a useful combinator, maybeI0, which turns an 10
action that might throw an exception into one that wraps its result in Maybe.

Exercises

1. Whatshould you pass to traverse to traverse a directory tree in reverse alphabetic
order?

2. Using id as a control function, traverse id performs a preorder traversal of a
tree: it returns a parent directory before its children. Write a control function that
makes traverse perform a postorder traversal, in which it returns children before
their parent.

3. Takethe predicates and combinators from “Gluing predicates together and make
them work with our new Info type.

4. Write a wrapper for traverse that lets you control traversal using one predicate,

and filter results using another.

Density, readability, and the learning process

Code as dense as traverse is not unusual in Haskell. The gain in expressiveness is
significant, and it requires a relatively small amount of practice to be able to fluently
read and write code in this style.

For comparison, here's a less dense presentation of the same code. This might be more
typical of a less experienced Haskell programmer.

-- file: ch09/ControlledVisit.hs
traverseVerbose order path = do

names <- getDirectoryContents path
let usefulNames = filter (“notElem™ [".", ".."]) names
contents <- mapM getEntryName ("" : usefulNames)
recursiveContents <- mapM recurse (order contents)
return (concat recursiveContents)
where getEntryName name = getInfo (path </> name)
isDirectory info = case infoPerms info of
Nothing -> False
Just perms -> searchable perms
recurse info = do
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if isDirectory info && infoPath info /= path
then traverseVerbose order (infoPath info)
else return [info]

All we've done here is make a few substitutions. Instead of liberally using partial ap-
plication and function composition, we've defined some local functions in a where
block. In place of the maybe combinator, we're using a case expression. And instead of
using 1iftM, we're manually lifting concat ourselves.

This is not to say that density is a uniformly good property. Each line of the original
traverse function is short. We introduce a local variable (usefulNames) and a local
function (isDirectory) specifically to keep the lines short and the code clearer. Our
names are descriptive. While we use function composition and pipelining, the longest
pipeline contains only three elements.

The key to writing maintainable Haskell code is to find a balance between density and
readability. Where your code falls on this continuum is likely to be influenced by your
level of experience.

* As a beginning Haskell programmer, Andrew doesn't know his way around the
standard libraries very well. As a result, he unwittingly duplicates a lot of existing
code.

* Zack has been programming for a few months, and has mastered the use of (.) to
compose long pipelines of code. Every time the needs of his program change
slightly, he has to construct a new pipeline from scratch: he can't understand the
existing pipeline any longer, and it is in any case too fragile to change.

* Monica has been coding for a while. She's familiar enough with Haskell libraries
and idioms to write tight code, but she avoids a hyperdense style. Her code is
maintainable, and she finds it easy to refactor when faced with changing require-
ments.

Another way of looking at traversal

While the traverse function gives us more control than our original betterFind func-
tion, it still has a significant failing: we can avoid recursing into directories, but we can't
filter other names until after we've generated the entire list of names in a tree. If we are
traversing a directory containing 100,000 files of which we care about three, we'll al-
locate a 100,000-element list before we have a chance to trim it down to the three we
really want.

One approach would be to provide a filter function as a new argument to traverse,
which we would apply to the list of names as we generate it. This would allow us to
allocate a list of only as many elements as we need.

However, this approach also has a weakness: say we know that we want at most three
entries from our list, and that those three entries happen to be the first three of the
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100,000 that we traverse. In this case, we'll needlessly visit 99,997 other entries. This
is not by any means a contrived example: for example, the Maildir mailbox format
stores a folder of email messages as a directory of individual files. It's common for a
single directory representing a mailbox to contain tens of thousands of files.

We can address the weaknesses of our two prior traversal functions by taking a different
perspective: what if we think of filesystem traversal as a fold over the directory hierar-
chy?

The familiar folds, foldr and foldl', neatly generalise the idea of traversing a list while
accumulating a result. It's hardly a stretch to extend the idea of folding from lists to
directory trees, but we'd like to add an element of control to our fold. We'll represent
this control as an algebraic data type.
-- file: cho9/FoldDir.hs
data Iterate seed = Done { unwrap :: seed }
| Skip { unwrap :: seed }
| Continue { unwrap :: seed }
deriving (Show)

type Iterator seed = seed -> Info -> Iterate seed

The Iterator type gives us a convenient alias for the function that we fold with. It takes
a seed and an Info value representing a directory entry, and returns both a new seed
and an instruction for our fold function, where the instructions are represented as the
constructors of the Iterate type.

* If the instruction is Done, traversal should cease immediately. The value wrapped
by Done should be returned as the result.

* If the instruction is Skip and the current Info represents a directory, traversal will
not recurse into that directory.

* Otherwise, the traversal should continue, using the wrapped value as the input to
the next call to the fold function.

Our fold is logically a kind of left fold, because we start folding from the first entry we
encounter, and the seed for each step is the result of the prior step.

-- file: cho09/FoldDir.hs
foldTree :: Iterator a -> a -> FilePath -> I0 a

foldTree iter initSeed path = do
endSeed <- fold initSeed path
return (unwrap endSeed)
where
fold seed subpath = getUsefulContents subpath >>= walk seed

walk seed (name:names) = do
let path' = path </> name
info <- getInfo path'
case iter seed info of
done@(Done _) -> return done
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Skip seed' -> walk seed' names
Continue seed’
| isDirectory info -> do
next <- fold seed' path'
case next of
done@(Done _) -> return done

seed'’ -> walk (unwrap seed'') names
| otherwise -> walk seed' names
walk seed _ = return (Continue seed)

There are a few interesting things about the way this code is written. The first is the use
of scoping to avoid having to pass extra parameters around. The top-level foldTree
function is just a wrapper for fold that peels off the constructor of the fold's final result.

Because fold is a local function, we don't have to pass foldTree's iter variable into it;
it can already access it in the outer scope. Similarly, walk can see path in its outer scope.

Another point to note is that walk is a tail recursive loop, instead of an anonymous
function called by forM as in our earlier functions. By taking the reins ourselves, we can
stop early if we need to. This lets us drop out when our iterator returns Done.

Although fold calls walk, walk calls fold recursively to traverse subdirectories. Each
function returns a seed wrapped in an Iterate: when fold is called by walk and returns,
walk examines its result to see whether it should continue or drop out because it re-
turned Done. In this way, a return of Done from the caller-supplied iterator immediately
terminates all mutually recursive calls between the two functions.

What does an iterator look like in practice? Here's a somewhat complicated example
that looks for at most three bitmap images, and won't recurse into Subversion metadata
directories.

-- file: ch09/FoldDir.hs
atMostThreePictures :: Iterator [FilePath]

atMostThreePictures paths info

length paths ==

= Done paths

isDirectory info 8& takeFileName path == ".svn

= Skip paths

extension “elem’ [".jpg", ".png"]

= Continue (path : paths)

otherwise

= Continue paths

where extension = map toLower (takeExtension path)
path = infoPath info

To use this, we'd call foldTree atMostThreePictures [], giving us a return value of type
1O [FilePath].

Of course, iterators don't have to be this complicated. Here's one that counts the num-
ber of directories it encounters.

-- file: cho9/FoldDir.hs
countDirectories count info =
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Continue (if isDirectory info
then count + 1
else count)

Here, the initial seed that we pass to foldTree should be the number zero.

Exercises

1. Modify foldTree to allow the caller to change the order of traversal of entries in
a directory.

2. The foldTree function performs preorder traversal. Modify it to allow the caller

to determine the order of traversal.

3. Write a combinator library that makes it possible to express the kinds of iterators
that foldTree accepts. Does it make the iterators you write any more succinct?

Useful coding guidelines

While many good Haskell programming habits come with experience, we have a few
general guidelines to offer so that you can write readable code more quickly.

As we already mentioned in “A note about tabs versus spaces, never use tab characters
in Haskell source files. Use spaces.

If you find yourself proudly thinking that a particular piece of code is fiendishly clever,
stop and consider whether you'll be able to understand it again after you've stepped
away from it for a month.

The conventional way of naming types and variables with compound names is to use
“camel case”, i.e. myVariableName. This style is almost universal in Haskell code. Re-
gardless of your opinion of other naming practices, if you follow a non-standard con-
vention, your Haskell code will be somewhat jarring to the eyes of other readers.

Until you've been working with Haskell for a substantial amount of time, spend a few
minutes searching for library functions before you write small functions. This applies
particularly to ubiquitous types like lists, Maybe, and Either. If the standard libraries
don't already provide exactly what you need, you might be able to combine a few func-
tions to obtain the result you desire.

Long pipelines of composed functions are hard to read, where “long” means a series
of more than three or four elements. If you have such a pipeline, use a let or where
block to break it into smaller parts. Give each one of these pipeline elements a mean-
ingful name, then glue them back together. If you can't think of a meaningful name for
an element, ask yourself if you can even describe what it does. If the answer is “no”,
simplify your code.

Even though it's easy to resize a text editor window far beyond 80 columns, this width
is still very common. Wider lines are wrapped or truncated in 80-column text editor
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windows, which severely hurts readability. Treating lines as no more than 80 characters
long limits the amount of code you can cram onto a single line. This helps to keep
individual lines less complicated, therefore easier to understand.

Common layout styles

A Haskell implementation won't make a fuss about indentation as long as your code
follows the layout rules and can hence be parsed unambiguously. That said, some lay-
out patterns are widely used.

The in keyword is usually aligned directly under the let keyword, with the expression
immediately following it.

-- file: cho9/Style.hs
tidylLet = let foo = undefined
bar = foo * 2
in undefined

While it's legal to indent the in differently, or to let it “dangle” at the end of a series of
equations, the following would generally be considered odd.
-- file: cho9/Style.hs
weirdlet = let foo = undefined
bar = foo * 2
in undefined

strangelet = let foo = undefined
bar = foo * 2 in

undefined

In contrast, it's usual to let a do dangle at the end of a line, rather than sit at the beginning
of a line.

-- file: cho9/Style.hs

commonDo = do

something <- undefined
return ()

-- not seen very often
rareDo =
do something <- undefined
return ()

Curly braces and semicolons, though legal, are almost never used. There's nothing
wrong with them; they just make code look strange due to their rarity. They're really
intended to let programs generate Haskell code without having to implement the layout
rules, not for human use.

-- file: cho9/Style.hs

unusualPunctuation =
[ (x,y) | x <- [1..a], y <- [1..b] ] where {
b =7;
a=61}
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preferredlLayout = [ (x,y) | x <- [1..a], y <- [1..b] ]
where b = 7
a=6
If the right hand side of an equation starts on a new line, it's usually indented a small
number of spaces relative to the name of the variable or function that it's defining.
-- file: cho9/Style.hs

normalIndent =
undefined

strangeIndent =
undefined

The actual number of spaces used to indent varies, sometimes within a single file.
Depths of two, three, and four spaces are about equally common. A single space is legal,
but not very visually distinctive, so it's easy to misread.

When indenting a where clause, it's best to make it visually distinctive.

-- file: cho9/Style.hs
goodWhere = take 5 lambdas
where lambdas = []

alsoGood =
take 5 lambdas
where
lambdas = []

badWhere = -- legal, but ugly and hard to read
take 5 lambdas
where
lambdas = []

Exercises

Although the file finding code we described in this chapter is a good vehicle for learning,

it's not ideal for real systems programming tasks, because Haskell's portable 1/O libra-

ries don't expose enough information to let us write interesting and complicated quer-

ies.

1. Port the code from this chapter to your platform's native API, either Sys
tem.Posix or System.Win32.

2. Add the ability to find out who owns a directory entry to your code. Make this
information available to predicates.
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CHAPTER 10
Code case study: parsing a binary data
format

In this chapter, we'll discuss a common task: parsing a binary file. We will use this task
for two purposes. Our first is indeed to talk a little about parsing, but our main goal is
to talk about program organisation, refactoring, and “boilerplate removal”. We will
demonstrate how you can tidy up repetitious code, and set the stage for our discussion
of monads in Chapter 14.

The file formats that we will work with come from the netpbm suite, an ancient and
venerable collection of programs and file formats for working with bitmap images.
These file formats have the dual advantages of wide use and being fairly easy, though
not completely trivial, to parse. Most importantly for our convenience, netpbm files
are not compressed.

Greyscale files

The name of netpbm's greyscale file format is PGM (“portable grey map”). It is actually
not one format, but two; the “plain” (or “P2”) format is encoded as ASCII, while the
more common “raw” (“P5”) format is mostly binary.

A file of either format starts with a header, which in turn begins with a “magic” string
describing the format. For a plain file, the string is P2, and for raw, it's P5. The magic
string is followed by white space, then by three numbers: the width, height, and max-
imum grey value of the image. These numbers are represented as ASCII decimal num-
bers, separated by white space.

After the maximum grey value comes the image data. In a raw file, this is a string of
binary values. In a plain file, the values are represented as ASCII decimal numbers
separated by single space characters.

A raw file can contain a sequence of images, one after the other, each with its own
header. A plain file contains only one image.
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Parsing a raw PGM file

For our first try at a parsing function, we'll only worry about raw PGM files. We'll write
our PGM parser as a pure function. It's not responsible for obtaining the data to parse,
just for the actual parsing. This is a common approach in Haskell programs. By sepa-
rating the reading of the data from what we subsequently do with it, we gain flexibility
in where we take the data from.

We'll use the ByteString type to store our greymap data, because it's compact. Since the
header of a PGM file is ASCII text, but its body is binary, we import both the text- and
binary-oriented ByteString modules.

-- file: ch10/PNM.hs

import qualified Data.ByteString.lLazy.Char8 as L8

import qualified Data.ByteString.lLazy as L
import Data.Char (isSpace)

For our purposes, it doesn't matter whether we use a lazy or strict ByteString, so we've
somewhat arbitrarily chosen the lazy kind.

We'll use a straightforward data type to represent PGM images.

-- file: ch10/PNM.hs
data Greymap = Greymap {
greyWidth :: Int
, greyHeight :: Int
, greyMax :: Int
, greyData :: L.ByteString
} deriving (Eq)

Normally, a Haskell Show instance should produce a string representation that we can
read back by calling read. However, for a bitmap graphics file, this would potentially
produce huge text strings, for example if we were to show a photo. For this reason, we're
not going to let the compiler automatically derive a Show instance for us: we'll write
our own, and intentionally simplify it.

-- file: ch10/PNM.hs

instance Show Greymap where

show (Greymap w h m _) = "Greymap " ++ show w ++ "x" ++ show h ++
" " ++ show m

Because our Show instance intentionally avoids printing the bitmap data, there's no
point in writing a Read instance, as we can't reconstruct a valid Greymap from the result
of show.

Here's an obvious type for our parsing function.

-- file: ch10/PNM.hs
parseP5 :: L.ByteString -> Maybe (Greymap, L.ByteString)

This will take a ByteString, and if the parse succeeds, it will return a single parsed
Greymap, along with the string that remains after parsing. That residual string will
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Our parsing function has to consume a little bit of its input at a time. First, we need to
assure ourselves that we're really looking at a raw PGM file; then we need to parse the
numbers from the remainder of the header; then we consume the bitmap data. Here's
an obvious way to express this, which we will use as a base for later improvements.

-- file: ch10/PNM.hs
matchHeader :: L.ByteString -> L.ByteString -> Maybe L.ByteString

-- "nat" here is short for "natural number"
getNat :: L.ByteString -> Maybe (Int, L.ByteString)

getBytes :: Int -> L.ByteString
-> Maybe (L.ByteString, L.ByteString)

parseP5 s =
case matchHeader (L8.pack "P5") s of
Nothing -> Nothing
Just s1 ->
case getNat s1 of
Nothing -> Nothing
Just (width, s2) ->
case getNat (L8.dropWhile isSpace s2) of
Nothing -> Nothing
Just (height, s3) ->
case getNat (L8.dropWhile isSpace s3) of
Nothing -> Nothing
Just (maxGrey, s4)
| maxGrey > 255 -> Nothing
| otherwise ->
case getBytes 1 s4 of
Nothing -> Nothing
Just (_, s5) ->
case getBytes (width * height) s5 of
Nothing -> Nothing
Just (bitmap, s6) ->
Just (Greymap width height maxGrey bitmap, s6)

This is a very literal piece of code, performing all of the parsing in one long staircase of
case expressions. Each function returns the residual ByteString left over after it has
consumed all it needs from its input string. We pass each residual string along to the
next step. We deconstruct each result in turn, either returning Nothing if the parsing
step failed, or building up a piece of the final result as we proceed. Here are the bodies
of the functions that we apply during parsing. Their types are commented out because
we already presented them above.

-- file: ch10/PNM.hs

-- L.ByteString -> L.ByteString -> Maybe L.ByteString

matchHeader prefix str

| prefix °"L8.isPrefixOf" str
= Just (L8.dropWhile isSpace (L.drop (L.length prefix) str))

| otherwise
= Nothing

-- L.ByteString -> Maybe (Int, L.ByteString)

Parsingaraw PGMfile | 241



getNat s = case L8.readInt s of
Nothing -> Nothing
Just (num,rest)
| num <=0 -> Nothing
| otherwise -> Just (fromIntegral num, rest)

-- Int -> L.ByteString -> Maybe (L.ByteString, L.ByteString)
getBytes n str = let count = fromIntegral n
both@(prefix, ) = L.splitAt count str
in if L.length prefix < count
then Nothing
else Just both

Getting rid of boilerplate code

While our parsePs5 function works, the style in which we wrote it is somehow not
pleasing. Our code marches steadily to the right of the screen, and it's clear that a slightly
more complicated function would soon run out of visual real estate. We repeat a pattern
of constructing and then deconstructing Maybe values, only continuing if a particular
value matches Just. All of the similar case expressions act as “boilerplate code”, busy-
work that obscures what we're really trying to do. In short, this function is begging for
some abstraction and refactoring.

If we step back a little, we can see two patterns. First is that many of the functions that
we apply have similar types. Each takes a ByteString as its last argument, and returns
Maybe something else. Secondly, every step in the “ladder” of our parseP5 function
deconstructs a Maybe value, and either fails or passes the unwrapped result to a func-
tion.

We can quite easily write a function that captures this second pattern.
-- file: ch10/PNM.hs
(>>?) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>? _ = Nothing
Just v »? f=+Fv

The (>>?) function acts very simply: it takes a value as its left argument, and a function
as its right. If the value is not Nothing, it applies the function to whatever is wrapped
in the Just constructor. We have defined our function as an operator so that we can
use it to chain functions together. Finally, we haven't provided a fixity declaration for
(»>?), so it defaults to infixl 9 (left associative, strongest operator precedence). In
other words, a >>? b »? c will be evaluated from left to right, as (a >>? b) >>? ¢).

With this chaining function in hand, we can take a second try at our parsing function.

-- file: ch10/PNM.hs
parseP5 take2 :: L.ByteString -> Maybe (Greymap, L.ByteString)
parseP5 take2 s =

matchHeader (L8.pack "P5") s >?
\s -> skipSpace ((), s) >?
(getNat . snd) >>?
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skipSpace >>?

\(width, s) -> getNat s >>?
skipSpace >>?
\(height, s) -> getNat s >»?
\(maxGrey, s) -> getBytes 1 s >>?

(getBytes (width * height) . snd) >>?
\(bitmap, s) -> Just (Greymap width height maxGrey bitmap, s)

skipSpace :: (a, L.ByteString) -> Maybe (a, L.ByteString)

skipSpace (a, s) = Just (a, L8.dropWhile isSpace s)
The key to understanding this function is to think about the chaining. On the left hand
side of each (>>?) is a Maybe value; on the right is a function that returns a Maybe
value. Each left-and-right-sides expression is thus of type Maybe, suitable for passing
to the following (>>?) expression.

The other change that we've made to improve readability is add a skipSpace function.
With these changes, we've halved the number of lines of code compared to our original
parsing function. By removing the boilerplate case expressions, we've made the code
easier to follow.

While we warned against overuse of anonymous functions in “Anonymous (lambda)
functions, we use several in our chain of functions here. Because these functions are so
small, we wouldn't improve readability by giving them names.

Implicit state

We're not yet out of the woods. Our code explicitly passes pairs around, using one
element for an intermediate part of the parsed result and the other for the current
residual ByteString. If we want to extend the code, for example to track the number of
bytes we've consumed so that we can report the location of a parse failure, we already
have eight different spots that we will need to modify, just to pass a three-tuple around.

This approach makes even a small body of code difficult to change. The problem lies
with our use of pattern matching to pull values out of each pair: we have embedded
the knowledge that we are always working with pairs straight into our code. As pleasant
and helpful as pattern matching is, it can lead us in some undesirable directions if we
do not use it carefully.

Let's do something to address the inflexibility of our new code. First, we will change
the type of state that our parser uses.
-- file: ch10/Parse.hs
data ParseState = ParseState {
string :: L.ByteString
, offset :: Int64 -- imported from Data.Int
} deriving (Show)

In our switch to an algebraic data type, we added the ability to track both the current
residual string and the offset into the original string since we started parsing. The more
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important change was our use of record syntax: we can now avoid pattern matching
on the pieces of state that we pass around, and use the accessor functions string and
offset instead.

We have given our parsing state a name. When we name something, it can become
easier to reason about. For example, we can now look at parsing as a kind of function:
it consumes a parsing state, and produces both a new parsing state and some other
piece of information. We can directly represent this as a Haskell type.

-- file: ch10/Parse.hs

simpleParse :: ParseState -> (a, ParseState)
simpleParse = undefined

To provide more help to our users, we would like to report an error message if parsing
fails. This only requires a minor tweak to the type of our parser.
-- file: chio/Parse.hs

betterParse :: ParseState -> Either String (a, ParseState)
betterParse = undefined

In order to future-proof our code, it is best if we do not expose the implementation of
our parser to our users. When we explicitly used pairs for state earlier, we found our-
selves in trouble almost immediately, once we considered extending the capabilities of
our parser. To stave off a repeat of that difficulty, we will hide the details of our parser
type using a newtype declaration.

-- file: ch1o/Parse.hs

newtype Parse a = Parse {

runParse :: ParseState -> Either String (a, ParseState)

}

Remember that the newtype definition is just a compile-time wrapper around a function,
so it has no run-time overhead. When we want to use the function, we will apply the
runParser accessor.

If we do not export the Parse value constructor from our module, we can ensure that
nobody else will be able to accidentally create a parser, nor will they be able to inspect
its internals via pattern matching.

The identity parser

Let's try to define a simple parser, the identity parser. All it does is turn whatever it is
passed into the result of the parse. In this way, it somewhat resembles the id function.
-- file: ch10/Parse.hs
identity :: a -> Parse a
identity a = Parse (\s -> Right (a, s))
This function leaves the parse state untouched, and uses its argument as the result of
the parse. We wrap the body of the function in our Parse type to satisfy the type checker.
How can we use this wrapped function to parse something?
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The first thing we must do is peel off the Parse wrapper so that we can get at the function
inside. We do so using the runParse function. We also need to construct a ParseState,
then run our parsing function on that parse state. Finally, we'd like to separate the result
of the parse from the final ParseState.

-- file: ch10/Parse.hs
parse :: Parse a -> L.ByteString -> Either String a
parse parser initState
= case runParse parser (ParseState initState 0) of
Left err -> Left err
Right (result, ) -> Right result

Because neither the identity parser nor the parse function examines the parse state,
we don't even need to create an input string in order to try our code.

ghci> :load Parse

[1 of 2] Compiling PNM ( PNM.hs, interpreted )
[2 of 2] Compiling Parse ( Parse.hs, interpreted )
Ok, modules loaded: Parse, PNM.

ghci> :type parse (identity 1) undefined

parse (identity 1) undefined :: (Num t) => Either String t
ghci> parse (identity 1) undefined

Loading package array-0.1.0.0 ... linking ... done.
Loading package bytestring-0.9.0.1.1 ... linking ... done.
Right 1

ghci> parse (identity "foo") undefined

Right "foo"

A parser that doesn't even inspect its input might not seem interesting, but we will
shortly see that in fact it is useful. Meanwhile, we have gained confidence that our types
are correct and that we understand the basic workings of our code.

Record syntax, updates, and pattern matching

Record syntax is useful for more than just accessor functions: we can use it to copy and
partly change an existing value. In use, the notation looks like this.

-- file: ch1o/Parse.hs

modifyOffset :: ParseState -> Int64 -> ParseState

modifyOffset initState newOffset =
initState { offset = newOffset }

This creates a new ParseState value identical to initState, but with its offset field set
to whatever value we specify for new0ffset.
ghci> let before = ParseState (L8.pack "foo") 0

ghci> let after = modifyOffset before 3
ghci> before

ParseState {string = Chunk "foo" Empty, offset = 0}
ghci> after
ParseState {string = Chunk "foo" Empty, offset = 3}

We can set as many fields as we want inside the curly braces, separating them using
commas.
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A more interesting parser

Let's focus now on writing a parser that does something meaningful. We're not going
to get too ambitious yet: all we want to do is parse a single byte.

-- file: chio/Parse.hs
-- import the Word8 type from Data.Word
parseByte :: Parse Word8
parseByte =
getState ==> \initState ->
case L.uncons (string initState) of
Nothing ->
bail "no more input"
Just (byte,remainder) ->
putState newState ==> \_ ->
identity byte
where newState = initState { string = remainder,
offset = newOffset }
newOffset = offset initState + 1

There are a number of new functions in our definition.

The L8.uncons function takes the first element from a ByteString.

ghci> L8.uncons (L8.pack "foo")
Just ('f',Chunk "o0o" Empty)
ghci> L8.uncons L8.empty
Nothing

Our getState function retrieves the current parsing state, while putState replaces it.
The bail function terminates parsing and reports an error. The (==>) function chains
parsers together. We will cover each of these functions shortly.

L)
)

Hanging lambdas

N
063" The definition of parseByte has a visual style that we haven't discussed
before. It contains anonymous functions in which the parameters and
-> sit at the end of a line, with the function's body following on the next
line.

This style of laying out an anonymous function doesn't have an official
name, so let's call it a “hanging lambda”. Its main use is to make room
for more text in the body of the function. It also makes it more visually
clear that there's a relationship between one function and the one that
follows. Often, for instance, the result of the first function is being
passed as a parameter to the second.
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Obtaining and modifying the parse state

Our parseByte function doesn't take the parse state as an argument. Instead, it has to
call getState to get a copy of the state, and putState to replace the current state with a
new one.

-- file: ch1o/Parse.hs

getState :: Parse ParseState
getState = Parse (\s -> Right (s, s))

putState :: ParseState -> Parse ()
putState s = Parse (\_ -> Right ((), s))

When reading these functions, recall that the left element of the tuple is the result of a
Parse, while the right is the current ParseState. This makes it easier to follow what these
functions are doing.

The getState function extracts the current parsing state, so that the caller can access
the string. The putState function replaces the current parsing state with a new one.
This becomes the state that will be seen by the next function in the (==>) chain.

These functions let us move explicit state handling into the bodies of only those func-
tions that need it. Many functions don't need to know what the current state is, and so
they'll never call getState or putState. This lets us write more compact code than our
earlier parser, which had to pass tuples around by hand. We will see the effect in some
of the code that follows.

We've packaged up the details of the parsing state into the ParseState type, and we work
with it using accessors instead of pattern matching. Now that the parsing state is passed
around implicitly, we gain a further benefit. If we want to add more information to the
parsing state, all we need to do is modify the definition of ParseState, and the bodies
of whatever functions need the new information. Compared to our earlier parsing code,
where all of our state was exposed through pattern matching, this is much more mod-
ular: the only code we affect is code that needs the new information.

Reporting parse errors

We carefully defined our Parse type to accommodate the possibility of failure. The
(==>) combinator checks for a parse failure and stops parsing if it runs into a failure.
But we haven't yet introduced the bail function, which we use to report a parse error.
-- file: ch10/Parse.hs
bail :: String -> Parse a

bail err = Parse $ \s -> Left $
"byte offset " ++ show (offset s) ++ ": " ++ err

After we call bail, (==>) will successfully pattern match on the Left constructor that it
wraps the error message with, and it will not invoke the next parser in the chain. This
will cause the error message to percolate back through the chain of prior callers.
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Chaining parsers together

The (==>) function serves a similar purpose to our earlier (>>?) function: it is “glue”
that lets us chain functions together.

-- file: chio/Parse.hs
(==>) :: Parse a -> (a -> Parse b) -> Parse b

firstParser ==> secondParser = Parse chainedParser
where chainedParser initState =
case runParse firstParser initState of
Left errMessage ->
Left errMessage
Right (firstResult, newState) ->
runParse (secondParser firstResult) newState

The body of (==>) is interesting, and ever so slightly tricky. Recall that the Parse type
represents really a function inside a wrapper. Since (==>) lets us chain two Parse values
to produce a third, it must return a function, in a wrapper.

The function doesn't really “do” much: it just creates a closure to remember the values
of firstParser and secondParser.

N

A closure is simply the pairing of a function with its environment, the
bound variables that it can see. Closures are commonplace in Haskell.
s For instance, the section (+5) is a closure. An implementation must
record the value 5 as the second argument to the (+) operator, so that
the resulting function can add 5 to whatever value it is passed.

This closure will not be unwrapped and applied until we apply parse. At that point, it
will be applied with a ParseState. It will apply firstParser and inspect its result. If that
parse fails, the closure will fail too. Otherwise, it will pass the result of the parse and
the new ParseState to secondParser.

This is really quite fancy and subtle stuff: we're effectively passing the ParseState down
the chain of Parse values in a hidden argument. (We'll be revisiting this kind of code in
a few chapters, so don't fret if that description seemed dense.)

Introducing functors

We're by now thoroughly familiar with the map function, which applies a function to
every element of a list, returning a list of possibly a different type.

ghci> map (+1) [1,2,3]

[2,3,4]

ghci> map show [1,2,3]

["1","2" "3"]

ghci> :type map show

map show :: (Show a) => [a] -> [String]
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This map-like activity can be useful in other instances. For example, consider a binary
tree.

-- file: ch10/TreeMap.hs

data Tree a = Node (Tree a) (Tree a)

| Leaf a
deriving (Show)

If we want to take a tree of strings and turn it into a tree containing the lengths of those
strings, we could write a function to do this.
-- file: ch10/TreeMap.hs

treelengths (Leaf s) = Leaf (length s)
treelengths (Node 1 r) = Node (treelengths 1) (treeLengths r)

Now that our eyes are attuned to looking for patterns that we can turn into generally
useful functions, we can see a possible case of this here.

-- file: ch10/TreeMap.hs

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap f (Leaf a) = Leaf (f a)
treeMap f (Node 1 r) = Node (treeMap f 1) (treeMap f r)

As we might hope, treeLengths and treeMap length give the same results.

ghci> let tree = Node (Leaf "foo") (Node (Leaf "x") (Leaf "quux"))
ghci> treelengths tree

Node (Leaf 3) (Node (Leaf 1) (Leaf 4))

ghci> treeMap length tree

Node (Leaf 3) (Node (Leaf 1) (Leaf 4))

ghci> treeMap (odd . length) tree

Node (Leaf True) (Node (Leaf True) (Leaf False))

Haskell provides a well-known typeclass to further generalise treeMap. This typeclass
is named Functor, and it defines one function, fmap.
-- file: ch10/TreeMap.hs

class Functor f where
fmap :: (@ ->b) >fa->fb

We can think of fmap as a kind of lifting function, as we introduced in “Avoiding boil-

erplate with lifting. It takes a function over ordinary values a -> b and lifts it to become
a function over containers f a -> f b, where f is the container type.

If we substitute Tree for the type variable f, for example, the type of fmap is identical
to the type of treeMap, and in fact we can use treeMap as the implementation of fmap
over Trees.

-- file: ch10/TreeMap.hs

instance Functor Tree where
fmap = treeMap

We can also use map as the implementation of fmap for lists.

-- file: ch10/TreeMap.hs
instance Functor [] where
fmap = map
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We can now use fmap over different container types.

ghci> fmap length ["foo","quux"]

[3,4]

ghci> fmap length (Node (Leaf "Livingstone") (Leaf "I presume"))
Node (Leaf 11) (Leaf 9)

The Prelude defines instances of Functor for several common types, notably lists and
Maybe.
-- file: ch10/TreeMap.hs
instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)
The instance for Maybe makes it particularly clear what an fmap implementation needs
to do. The implementation must have a sensible behaviour for each of a type's con-
structors. If a value is wrapped in Just, for example, the fmap implementation calls the
function on the unwrapped value, then rewraps it in Just.

The definition of Functor imposes a few obvious restrictions on what we can do with
fmap. For example, we can only make instances of Functor from types that have exactly
one type parameter.

We can't write an fmap implementation for Either a b or (a, b), for example, because
these have two type parameters. We also can't write one for Bool or Int, as they have
no type parameters.

In addition, we can't place any constraints on our type definition. What does this mean?
To illustrate, let's first look at a normal data definition and its Functor instance.

-- file: ch10/ValidFunctor.hs
data Foo a = Foo a

instance Functor Foo where
fmap f (Foo a) = Foo (f a)
When we define a new type, we can add a type constraint just after the data keyword
as follows.

-- file: ch10/ValidFunctor.hs
data Eq a => Bar a = Bar a

instance Functor Bar where
fmap f (Bar a) = Bar (f a)
This says that we can only put a type a into a Foo if a is a member of the Eq typeclass.
However, the constraint renders it impossible to write a Functor instance for Bar.

ghci> :load ValidFunctor
[1 of 1] Compiling Main ( validFunctor.hs, interpreted )

ValidFunctor.hs:12:12:
Could not deduce (Eq a) from the context (Functor Bar)
arising from a use of "Bar' at ValidFunctor.hs:12:12-16
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Possible fix:
add (Eq a) to the context of the type signature for "fmap'
In the pattern: Bar a
In the definition of “fmap': fmap f (Bar a) = Bar (f a)
In the definition for method " fmap'

ValidFunctor.hs:12:21:
Could not deduce (Eq b) from the context (Functor Bar)
arising from a use of “Bar' at ValidFunctor.hs:12:21-29
Possible fix:
add (Eq b) to the context of the type signature for *fmap'
In the expression: Bar (f a)
In the definition of “fmap': fmap f (Bar a) = Bar (f a)
In the definition for method " fmap'
Failed, modules loaded: none.

Constraints on type definitions are bad

Adding a constraint to a type definition is essentially never a good idea. It has the effect
of forcing you to add type constraints to every function that will operate on values of
that type. Let's say that we need a stack data structure that we want to be able to query
to see whether its elements obey some ordering. Here's a naive definition of the data

type.

-- file: ch10/TypeConstraint.hs
data (Ord a) => OrdStack a = Bottom
| Item a (OrdStack a)
deriving (Show)

If we want to write a function that checks the stack to see whether it is increasing (i.e.
every elementis bigger than the element below it), we'll obviously need an Ord constraint
to perform the pairwise comparisons.

-- file: ch10/TypeConstraint.hs

isIncreasing :: (Ord a) => OrdStack a -> Bool
isIncreasing (Item a rest@(Item b _))

|a<b = isIncreasing rest
| otherwise = False
isIncreasing _ = True

However, because we wrote the type constraint on the type definition, that constraint
ends up infecting places where it isn't needed: we need to add the Ord constraint to
push, which does not care about the ordering of elements on the stack.

-- file: ch10/TypeConstraint.hs

push :: (Ord a) => a -> OrdStack a -> OrdStack a
push a s = Itema s

Try removing that Ord constraint above, and the definition of push will fail to typecheck.

This is why our attempt to write a Functor instance for Bar failed earlier: it would have
required an Eq constraint to somehow get retroactively added to the signature of fmap.
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Now that we've tentatively established that putting a type constraint on a type definition
is a misfeature of Haskell, what's a more sensible alternative? The answer is simply to
omit type constraints from type definitions, and instead place them on the functions
that need them.

In this example, we can drop the Ord constraints from OrdStack and push. It needs to
stay on isIncreasing, which otherwise couldn't call (<). We now have the constraints
where they actually matter. This has the further benefit of making the type signatures
better document the true requirements of each function.

Most Haskell container types follow this pattern. The Map type in the Data.Map module
requires that its keys be ordered, but the type itself does not have such a constraint.
The constraint is expressed on functions like insert, where it's actually needed, and
not on size, where ordering isn't used.

Infix use of fmap

Quite often, you'll see fmap called as an operator.

ghci> (1+) “fmap® [1,2,3] ++ [4,5,6]
[2,3,4,4,5,6]

Perhaps strangely, plain old map is almost never used in this way.

One possible reason for the stickiness of the fmap-as-operator meme is that this use lets
us omit parentheses from its second argument. Fewer parentheses leads to reduced
mental juggling while reading a function.

ghci> fmap (1+) ([1,2,3] ++ [4,5,6])

[2,3,4,5,6,7]
If you really want to use fmap as an operator, the Control.Applicative module contains
an operator (<$>) that is an alias for fmap. The $ in its name appeals to the similarity
between applying a function to its arguments (using the ($) operator) and lifting a
function into a functor. We will see that this works well for parsing when we return to
the code that we have been writing.

Flexible instances

You might hope that we could write a Functor instance for the type Either Int b, which
has one type parameter.
-- file: ch10/EitherInt.hs
instance Functor (Either Int) where
fmap _ (Left n) = Left n
fmap f (Right r) = Right (f 1)
However, the type system of Haskell 98 cannot guarantee that checking the constraints
on such an instance will terminate. A non-terminating constraint check may send a
compiler into an infinite loop, so instances of this form are forbidden.
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ghci> :load EitherInt
[1 of 1] Compiling Main ( EitherInt.hs, interpreted )

EitherInt.hs:2:0:
Illegal instance declaration for “Functor (Either Int)'
(A1l instance types must be of the form (T a1 ... an)
where a1l ... an are type *variables*,
and each type variable appears at most once in the instance head.
Use -XFlexibleInstances if you want to disable this.)
In the instance declaration for ‘Functor (Either Int)'
Failed, modules loaded: none.

GHC has a more powerful type system than the base Haskell 98 standard. It operates
in Haskell 98 compatibility mode by default, for maximal portability. We can instruct
it to allow more flexible instances using a special compiler directive.

-- file: ch10/EitherIntFlexible.hs
{-# LANGUAGE FlexibleInstances #-}

instance Functor (Either Int) where
fmap _ (Left n) = Left n
fmap f (Right r) = Right (f r)

The directive is embedded in the specially formatted LANGUAGE pragma.

With our Functor instance in hand, let's try out fmap on Either Int.

ghci> :load EitherIntFlexible

[1 of 1] Compiling Main ( EitherIntFlexible.hs, interpreted )
0k, modules loaded: Main.

ghci> fmap (== "cheeseburger") (Left 1 :: Either Int String)

Left 1

ghci> fmap (== "cheeseburger") (Right "fries" :: Either Int String)

Right False

Thinking more about functors

We've made a few implicit assumptions about how functors ought to work. It's helpful
to make these explicit and to think of them as rules to follow, because this lets us treat
functors as uniform, well-behaved objects. We have only two rules to remember, and
they're simple.

Our first rule is that a functor must preserve identity. That is, applying fmap id to a
value should give us back an identical value.

ghci> fmap id (Node (Leaf "a") (Leaf "b"))
Node (Leaf "a") (Leaf "b")

Our second rule is that functors must be composable. That is, composing two uses of
fmap should give the same result as one fmap with the same functions composed.

ghci> (fmap even . fmap length) (Just "twelve")
Just True

ghci> fmap (even . length) (Just "twelve")

Just True
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Another way of looking at these two rules is that a functor must preserve shape. The
structure of a collection should not be affected by a functor; only the values that it
contains should change.

ghci> fmap odd (Just 1)

Just True

ghci> fmap odd Nothing
Nothing

If you're writing a Functor instance, it's useful to keep these rules in mind, and indeed
to test them, because the compiler can't check the rules we've listed above. On the other
hand, if you're simply using functors, the rules are “natural” enough that there's no
need to memorise them. They just formalize a few intuitive notions of “do what I
mean”. Here is a pseudocode representation of the expected behavior.

-- file: ch10/FunctorLaws.hs

fmap id == id

fmap (f . g) == fmap f . fmap g

Writing a functor instance for Parse

For the types we have surveyed so far, the behaviour we ought to expect of fmap has
been obvious. This is a little less clear for Parse, due to its complexity. A reasonable
guess is that the function we're fmapping should be applied to the current result of a
parse, and leave the parse state untouched.

-- file: chi1o/Parse.hs
instance Functor Parse where
fmap f parser = parser ==> \result ->
identity (f result)

This definition is easy to read, so let's perform a few quick experiments to see if we're
following our rules for functors.

First, we'll check that identity is preserved. Let's try this first on a parse that ought to
fail: parsing a byte from an empty string (remember that (<$>) is fmap).

ghci> parse parseByte L.empty

Left "byte offset 0: no more input"
ghci> parse (id <$> parseByte) L.empty
Left "byte offset 0: no more input"

Good. Now for a parse that should succeed.

ghci> let input = L8.pack "foo"
ghci> L.head input

102

ghci> parse parseByte input

Right 102

ghci> parse (id <$> parseByte) input
Right 102
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By inspecting the results above, we can also see that our functor instance is obeying
our second rule, that of preserving shape. Failure is preserved as failure, and success as
success.

Finally, we'll ensure that composability is preserved.
ghci> parse ((chr . fromIntegral) <$> parseByte) input
Right 'f'
ghci> parse (chr <$> fromIntegral <$> parseByte) input
Right 'f'

On the basis of this brief inspection, our Functor instance appears to be well behaved.

Using functors for parsing

All this talk of functors had a purpose: they often let us write tidy, expressive code.
Recall the parseByte function that we introduced earlier. In recasting our PGM parser
to use our new parser infrastructure, we'll often want to work with ASCII characters
instead of Word8 values.

While we could write a parseChar function that has a similar structure to parseByte,
we can now avoid this code duplication by taking advantage of the functor nature of
Parse. Our functor takes the result of a parse and applies a function to it, so what we
need is a function that turns a Word8 into a Char.

-- file: ch1o/Parse.hs

w2c :: Word8 -> Char
w2c = chr . fromIntegral

-- import Control.Applicative
parseChar :: Parse Char
parseChar = w2c <$> parseByte

We can also use functors to write a compact “peek” function. This returns Nothing if
we're at the end of the input string. Otherwise, it returns the next character without
consuming it (i.e. it inspects, but doesn't disturb, the current parsing state).

-- file: ch10/Parse.hs

peekByte :: Parse (Maybe Word8)
peekByte = (fmap fst . L.uncons . string) <$> getState

The same lifting trick that let us define parseChar lets us write a compact definition for
peekChar.
-- file: ch10/Parse.hs

peekChar :: Parse (Maybe Char)
peekChar = fmap w2c <$> peekByte

Notice that peekByte and peekChar each make two calls to fmap, one of which is disguised
as (<$>). Thisisnecessary because the type Parse (Maybe a) is a functor within a functor.
We thus have to lift a function twice to “get it into” the inner functor.
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Finally, we'll write another generic combinator, which is the Parse analogue of the
familiar takeWhile: it consumes its input while its predicate returns True.

-- file: ch10/Parse.hs
parseWhile :: (Word8 -> Bool) -> Parse [Word8]
parseWhile p = (fmap p <$> peekByte) ==> \mp ->
if mp == Just True
then parseByte ==> \b ->
(b:) <$> parseWhile p
else identity []

Once again, we're using functors in several places (doubled up, when necessary) to
reduce the verbosity of our code. Here's a rewrite of the same function in a more direct
style that does not use functors.

-- file: chio/Parse.hs
parseWhileVerbose p =
peekByte ==> \mc ->
case mc of
Nothing -> identity []
Just c | pc >
parseByte ==> \b ->
parseWhileVerbose p ==> \bs ->
identity (b:bs)
| otherwise ->
identity []

The more verbose definition is likely easier to read when you are less familiar with
functors. However, use of functors is sufficiently common in Haskell code that the more
compact representation should become second nature (both to read and to write) fairly
quickly.

Rewriting our PGM parser

With our new parsing code, what does the raw PGM parsing function look like now?

-- file: ch1o/Parse.hs

parseRawPGM =
parseWhileWith w2c notWhite ==> \header -> skipSpaces ==>&
assert (header == "P5") "invalid raw header" ==>&

parseNat ==> \width -> skipSpaces ==>&

parseNat ==> \height -> skipSpaces ==>&

parseNat ==> \maxGrey ->

parseByte ==>&

parseBytes (width * height) ==> \bitmap ->

identity (Greymap width height maxGrey bitmap)
where notWhite = (“notElem” " \r\n\t")

This definition makes use of a few more helper functions that we present here, following
a pattern that should by now be familiar.
-- file: ch10/Parse.hs

parseWhileWith :: (Word8 -> a) -> (a -> Bool) -> Parse [a]
parseWhileWith f p = fmap f <$> parseWhile (p . f)
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parseNat :: Parse Int
parseNat = parseWhileWith w2c isDigit ==> \digits ->
if null digits
then bail "no more input"
else let n = read digits
inifn<o
then bail "integer overflow"
else identity n

(==>8&) :: Parse a -> Parse b -> Parse b
p==>f=p==>\_->fF

skipSpaces :: Parse ()
skipSpaces = parseWhileWith w2c isSpace ==>& identity ()

assert :: Bool -> String -> Parse ()
assert True = identity ()

assert False err = bail err

The (==>&) combinator chains parsers like (==>), but the right hand side ignores the
result from the left. The assert function lets us check a property, and abort parsing
with a useful error message if the property is False.

Notice how few of the functions that we have written make any reference to the current
parsing state. Most notably, where our old parseP5 function explicitly passed two-
tuples down the chain of dataflow, all of the state management in parseRawPCM is hidden
from us.

Of course, we can't completely avoid inspecting and modifying the parsing state. Here's
a case in point, the last of the helper functions needed by parseRawPGM.

-- file: ch1o/Parse.hs
parseBytes :: Int -> Parse L.ByteString
parseBytes n =
getState ==> \st ->
let n' = fromIntegral n
(h, t) = L.splitAt n' (string st)
st' = st { offset = offset st + L.length h, string = t }
in putState st' ==>&
assert (L.length h == n') "end of input" ==>&
identity h

Future directions

Our main theme in this chapter has been abstraction. We found passing explicit state
down a chain of functions to be unsatisfactory, so we abstracted this detail away. We
noticed some recurring needs as we worked out our parsing code, and abstracted those
into common functions. Along the way, we introduced the notion of a functor, which
offers a generalised way to map over a parameterised type.
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We will revisit parsing in Chapter 16, to discuss Parsec, a widely used and flexible
parsing library. And in Chapter 14, we will return to our theme of abstraction, where
we will find that much of the code that we have developed in this chapter can be further
simplified by the use of monads.

For efficiently parsing binary data represented as a ByteString, a number of packages
are available via the Hackage package database. At the time of writing, the most popular
is named binary, which is easy to use and offers high performance.

Exercises
Write a parser for “plain” PGM files.

2. Inourdescription of “raw” PGM files, we omitted a small detail. If the “maximum
grey” value in the header is less than 256, each pixel is represented by a single
byte. However, it can range up to 65535, in which case each pixel will be repre-
sented by two bytes, in big endian order (most significant byte first).

Rewrite the raw PGM parser to accommodate both the single- and double-byte
pixel formats.

3. Extend your parser so that it can identify a raw or plain PGM file, and parse the
appropriate file type.
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CHAPTER 11
Testing and quality assurance

Building real systems means caring about quality control, robustness and correctness.
With the right quality assurance mechanisms in place, well-written code can feel like
a precision machine, with all functions performing their tasks exactly as specified.
There is no sloppiness around the edges, and the final result can be code that is self-
explanatory, obviously correct -- the kind of code that inspires confidence.

In Haskell, we have several tools at our disposal for building such precise systems. The
most obvious tool, and one built into the language itself, is the expressive type-system,
which allows for complicated invariants to be enforced statically — making it impos-
sible to write code violating chosen constraints. In addition, purity and polymorphism
encourage a style of code that is modular, refactorable and testable. This is the kind of
code that just doesn't go wrong.

Testing plays a key role in keeping code on the straight-and-narrow path. The main
testing mechanisms in Haskell are traditional unit testing (via the HUnit library), and
its more powerful descendant: type-based “property” testing, with QuickCheck, an
open source testing framework for Haskell. Property-based testing encourages a high
level approach to testing in the form of abstract invariants functions should satisty
universally, with the actual test data generated for the programmer by the testing li-
brary. In this way code can be hammered with thousands of tests that would be infea-
sible to write by hand, often uncovering subtle corner cases that wouldn't be found
otherwise.

In this chapter we'll look at how to use QuickCheck to establish invariants in code and
then re-examine the pretty printer developed in previous chapters, testing it with
QuickCheck. We'll also see how to guide the testing process with GHC's code coverage
tool: HPC.

QuickCheck: type-based testing

To get an overview of how property-based testing works, we'll begin with a simple
scenario: you've written a specialised sorting function and want to test its behaviour.
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First, we import the QuickCheck library’, and any other modules we need:

-- file: ch11/QC-basics.hs
import Test.QuickCheck
import Data.list

And the function we want to test — a custom sort routine:

-- file: ch11/QC-basics.hs
gsort :: Ord a => [a] -> [a]
gsort [1 =[]
gsort (x:xs) = gsort lhs ++ [x] ++ gsort rhs
where lhs = filter (< x) xs
rhs = filter (>= x) xs

This is the classic Haskell sort implementation: a study in functional programming
elegance, if not efficiency (this isn't an inplace sort). Now, we'd like to check that this
function obeys the basic rules a good sort should follow. One useful invariant to start
with, and one that comes up in a lot of purely functional code, is idempotency — ap-
plying a function twice has the same result as applying it only once. For our sort routine,
astable sort algorithm, this should certainly be true, or things have gone horribly wrong!
This invariant can be encoded as a property simply:

-- file: ch11/QC-basics.hs
prop_idempotent xs = gsort (gsort xs) == gsort xs

We'll use the QuickCheck convention of prefixing test properties with prop_ to distin-
guish them from normal code. This idempotency property is written simply as a Haskell
function stating an equality that must hold for any input data that is sorted. We can
check this makes sense for a few simple cases by hand:

ghci> prop_idempotent []

True

ghci> prop_idempotent [1,1,1,1]

True

ghci> prop_idempotent [1..100]

True

ghci> prop_idempotent [1,5,2,1,2,0,9]

True

Looking good. However, writing out the input data by hand is tedious, and violates the
moral code of the efficient functional programmer: let the machine do the work! To
automate this the QuickCheck library comes with a set of data generators for all the
basic Haskell data types. QuickCheck uses the Arbitrary typeclass to present a uniform
interface to (pseudo-)random data generation with the type system used to resolve
which generator to use. QuickCheck normally hides the data generation plumbing,
however we can also run the generators by hand to get a sense for the distribution of
data QuickCheck produces. For example, to generate a random list of boolean values:

" Throughout this chapter we'll use QuickCheck 1.0 (classic QuickCheck). It should be kept in mind that a
some functions may differ in later releases of the library.
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ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Bool]
[False,False,False,False,False,True]

QuickCheck generates test data like this and passes it to the property of our choosing,
via the quickCheck function. The type of the property itself determines which data gen-
erator is used. quickCheck then checks that for all the test data produced, the property
is satisfied. Now, since our idempotency test is polymorphic in the list element type,
we need to pick a particular type to generate test data for, which we write as a type
constraint on the property. To run the test, we just call quickCheck with our property
function, set to the required data type (otherwise the list element type will default to
the uninteresting () type):

ghci> :type quickCheck

quickCheck :: (Testable a) => a -> I0 ()

ghci> quickCheck (prop_idempotent :: [Integer] -> Bool)
00, passed 100 tests.

For the 100 different lists generated, our property held — great! When developing tests,
it is often useful to see the actual data generated for each test. To do this, we would
replace quickCheck with its sibling, verboseCheck, to see (verbose) output for each test.
Now, let's look at more sophisticated properties that our function might satisfy.

Testing for properties

Good libraries consist of a set of orthogonal primitives having sensible relationships to
each other. We can use QuickCheck to specify the relationships between functions in
our code, helping us find a good library interface by developing functions that are
interrelated via useful properties. QuickCheck in this way acts as an API "lint" tool —
it provides machine support for ensuring our library API makes sense.

The list sorting function should certainly have a number of interesting properties that
tieit to other list operations. For example: the first element in a sorted list should always
be the smallest element of the input list. We might be tempted to specify this intuition
in Haskell, using the List library's minimum function:

-- file: ch11/QC-basics.hs

prop_minimum xs = head (gsort xs) == minimum xs
Testing this, though, reveals an error:

ghci> quickCheck (prop_minimum :: [Integer] -> Bool)

0** Exception: Prelude.head: empty list
The property failed when sorting an empty list — for which head and minimum are't
defined, as we can see from their definition:

-- file: ch11/minimum.hs

head :: [a] -> a

head (x:_) = x

head [] = error "Prelude.head: empty list"
minimum :: (0rd a) => [a] -> a
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minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1l min xs

So this property will only hold for non-empty lists. QuickCheck, thankfully, comes
with a full property writing embedded language, so we can specify more precisely our
invariants, filtering out values we don't want to consider. For the empty list case, we
really want to say: if the list is non-empty, then the first element of the sorted result is
the minimum. This is done by using the (==>) implication function, which filters out
invalid data before running the property:

-- file: ch11/QC-basics.hs
prop_minimum' xs = not (null xs) ==> head (qsort xs) == minimum xs

The result is quite clean. By separating out the empty list case, we can now confirm the
property does in fact hold:

ghci> quickCheck (prop_minimum' :: [Integer] -> Property)
00, passed 100 tests.

Note that we had to change the type of the property from being a simple Bool result to
the more general Property type (the property itself is now a function that filters non-
empty lists, before testing them, rather than a simple boolean constant).

We can now complete the basic property set for the sort function with some other
invariants that it should satisfy: that the output is ordered (each element should be
smaller than, or equal to, its successor); that the output is a permutation of the input
(which we achieve via the list difference function, (\\)); that the last sorted element
should be the largest element; and if we find the smallest element of two different lists,
that should be the first element if we append and sort those lists. These properties can
be stated as:

-- file: ch11/QC-basics.hs

prop_ordered xs = ordered (gsort xs)

where ordered [] = True

ordered [x] = True
ordered (x:y:xs) = x <=y 8& ordered (y:xs)

prop_permutation xs = permutation xs (qsort xs)
where permutation xs ys = null (xs \\ ys) & null (ys \\ xs)

prop_maximum xs =
not (null xs) ==>
last (gsort xs) == maximum xs

prop_append xs ys
not (null xs) ==>
not (null ys) ==>
head (gsort (xs ++ ys)) == min (minimum xs) (minimum ys)
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Testing against a model

Another technique for gaining confidence in some code is to test it against a model
implementation. We can tie our implementation of list sort to the reference sort func-
tion in the standard list library, and, if they behave the same, we gain confidence that
our sort does the right thing.

-- file: ch11/QC-basics.hs
prop_sort_model xs = sort xs == gsort xs

This kind of model-based testing is extremely powerful. Often developers will have a
reference implementation or prototype that, while inefficient, is correct. This can then
be kept around and used to ensure optimised production code conforms to the refer-
ence. By building a large suite of these model-based tests, and running them regularly
(on every commit, for example), we can cheaply ensure the precision of our code. Large
Haskell projects often come bundled with property suites comparable in size to the
project itself, with thousands of invariants tested on every change, keeping the code
tied to the specification, and ensuring it behaves as required.

Testing case study: specifying a pretty printer

Testing individual functions for their natural properties is one of the basic building
blocks that guides development of large systems in Haskell. We'll look now at a more
complicated scenario: taking the pretty printing library developed in earlier chapters,
and building a test suite for it.

Generating test data

Recall that the pretty printer is built around the Doc, an algebraic data type that rep-
resents well-formed documents:

-- file: ch11/Prettify2.hs

data Doc = Empty

| Char Char

| Text String

| Line

| Concat Doc Doc

| Union Doc Doc
deriving (Show,Eq)

The library itself is implemented as a set of functions that build and transform values
of this document type, before finally rendering the finished document to a string.

QuickCheck encourages an approach to testing where the developer specifies invariants
that should hold for any data we can throw at the code. To test the pretty printing
library, then, we'll need a source of input data. To do this, we take advantage of the
small combinator suite for building random data that QuickCheck provides via the
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Arbitrary class. The class provides a function, arbitrary, to generate data of each type,
and with this we can define our data generator for our custom data types. T
-- file: ch11/Arbitrary.hs

class Arbitrary a where
arbitrary :: Gen a

One thing to notice is that the generators run in a Gen environment, indicated by the
type. This is a simple state-passing monad that is used to hide the random number
generator state that is threaded through the code. We'll look thoroughly at monads in
later chapters, but for now it suffices to know that, as Gen is defined as a monad, we
can use do syntax to write new generators that access the implicit random number
source. To actually write generators for our custom type we use any of a set of functions
defined in the library for introducing new random values and gluing them together to
build up data structures of the type we're interested in. The types of the key functions
are:

-- file: chi11/Arbitrary.hs

elements :: [a] -> Gen a
choose  :: Random a => (a, a) -> Gen a
oneof :: [Gen a] -> Gen a

The function elements, for example, takes a list of values, and returns a generator of
random values from that list. choose and oneof we'll use later. With this, we can start
writing generators for simple data types. For example, if we define a new data type for
ternary logic:
-- file: chii/Arbitrary.hs
data Ternary
= Yes
| No
| Unknown
deriving (Eq,Show)

we can write an Arbitrary instance for the Ternary type by defining a function that picks
elements from a list of the possible values of Ternary type:
-- file: ch11/Arbitrary.hs

instance Arbitrary Ternary where
arbitrary = elements [Yes, No, Unknown]

Another approach to data generation is to generate values for one of the basic Haskell
types and then translate those values into the type you're actually interested in. We
could have written the Ternary instance by generating integer values from 0 to 2 instead,
using choose, and then mapping them onto the ternary values:

-- file: chi1/Arbitrary2.hs
instance Arbitrary Ternary where

T The class also defines a method, coarbitrary, which given a value of some type, yields a function for new
generators. We can disregard for now, as it is only needed for generating random values of function type.
One result of disregarding coarbitrary is that GHC will warn about it not being defined, however, it is safe
to ignore these warnings.
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arbitrary = do
n <- choose (0, 2) :: Gen Int
return $ case n of
0 -> Yes
1 -> No
-> Unknown

For simple sum types, this approach works nicely, as the integers map nicely onto the
constructors of the data type. For product types (such as structures and tuples), we need
to instead generate each component of the product separately (and recursively for nes-
ted types), and then combine the components. For example, to generate random pairs
of random values:
-- file: chi1/Arbitrary.hs
instance (Arbitrary a, Arbitrary b) => Arbitrary (a, b) where
arbitrary = do
X <- arbitrary
y <- arbitrary
return (x, y)

So let's now write a generator for all the different variants of the Doc type. We'll start
by breaking the problem down, first generating random constructors for each type,
then, depending on the result, the components of each field. The most complicated
case are the union and concatenation variants.

First, though, we need to write an instance for generating random characters — Quick-
Check doesn't have a default instance for characters, due to the abundance of different
text encodings we might want to use for character tests. We'll write our own, and, as
we don't care about the actual text content of the document, a simple generator of
alphabetic characters and punctuation will suffice (richer generators are simple exten-
sions of this basic approach):

-- file: ch11/QC.hs

instance Arbitrary Char where

arbitrary = elements (['A'..'Z'] ++ ['a' .. "z'] ++ " ~1@#$%°&*()")

With this in place, we can now write an instance for documents, by enumerating the
constructors, and filling the fields in. We choose a random integer to represent which
document variant to generate, and then dispatch based on the result. To generate concat
or union document nodes, we just recurse on arbitrary, letting type inference deter-
mine which instance of Arbitrary we mean:

-- file: ch11/QC.hs

instance Arbitrary Doc where

arbitrary = do
n <- choose (1,6) :: Gen Int
case n of
1 -> return Empty

2 -> do x <- arbitrary
return (Char x)

3 -> do x <- arbitrary
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return (Text x)
4 -> return Line

5 -> do x <- arbitrary
y <- arbitrary
return (Concat x y)

6 -> do x <- arbitrary
y <- arbitrary
return (Union x y)

That was fairly straightforward, and we can clean it up some more by using the oneof
function, whose type we saw earlier, to pick between different generators in a list (we
can also use the monadic combinator, 1iftM to avoid naming intermediate results from
each generator):

-- file: ch11/QC.hs
instance Arbitrary Doc where
arbitrary =
oneof [ return Empty
liftM Char arbitrary
liftM Text arbitrary
return Line
liftM2 Concat arbitrary arbitrary
1iftM2 Union arbitrary arbitrary ]

v e v W e

The latter is more concise, just picking between a list of generators, but they describe
the same data either way. We can check that the output makes sense, by generating a
list of random documents (seeding the pseudo-random generator with an initial seed
of 2):

ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Doc]
[Line,Empty,Union Empty Line,Union (Char 'R') (Concat (Union Line (Concat (Text "i@BmSu") (Char ')'))) (

Looking at the output we see a good mix of simple, base cases, and some more com-
plicated nested documents. We'll be generating hundreds of these each test run, so that
should do a pretty good job. We can now write some generic properties for our docu-
ment functions.

Testing document construction

Two of the basic functions on documents are the null document constant (a nullary
function), empty, and the append function. Their types are:

-- file: chi1/Prettify2.hs

empty :: Doc

(¢>) :: Doc -> Doc -> Doc
Together, these should have a nice property: appending or prepending the empty list
onto a second list, should leave the second list unchanged. We can state this invariant
as a property:
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-- file: ch11/QC.hs
prop_empty id x =
empty <> x == X
&&
X <> empty == x

Confirming that this is indeed true, we're now underway with our testing:

ghci> quickCheck prop_empty id

00, passed 100 tests.
To look at what actual test documents were generated (by replacing quickCheck with
verboseCheck). A good mixture of both simple and complicated cases are being gener-
ated. We can refine the data generation further, with constraints on the proportion of
generated data, if desirable.

Other functions in the API are also simple enough to have their behaviour fully descri-
bed via properties. By doing so we can maintain an external, checkable description of
the function's behaviour, so later changes won't break these basic invariants.

-- file: ch11/QC.hs

prop char ¢ = char ¢ == Char c
prop_text s = text s == if null s then Empty else Text s
prop_line = line == Line

prop_double d = double d == text (show d)

These properties are enough to fully test the structure returned by the basic document
operators. To test the rest of the library will require more work.

Using lists as a model

Higher order functions are the basic glue of reusable programming, and our pretty
printer library is no exception — a custom fold function is used internally to implement
both document concatenation and interleaving separators between document chunks.
The fold defined for documents takes a list of document pieces, and glues them all
together with a supplied combining function:

-- file: chi1/Prettify2.hs

fold :: (Doc -> Doc -> Doc) -> [Doc] -> Doc
fold f = foldr f empty

We can write tests in isolation for specific instances of fold easily. Horizontal concat-
enation of documents, for example, is easy to specify by writing a reference implemen-
tation on lists:

-- file: ch11/QC.hs

prop_hcat xs = hcat xs == glue xs
where
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glue [] empty

glue (d:ds) = d <> glue ds
It is a similar story for punctuate, where we can model inserting punctuation with list
interspersion (from Data.List, intersperse is a function that takes an element and
interleaves it between other elements of a list):

-- file: ch11/QC.hs
prop_punctuate s xs = punctuate s xs == intersperse s xs

While this looks fine, running it reveals a flaw in our reasoning:

ghci> quickCheck prop_punctuate
Falsifiable, after 6 tests:
Empty

[Line,Text "",Line]

The pretty printing library optimises away redundant empty documents, something
the model implementation doesn't, so we'll need to augment our model to match reality.
First, we can intersperse the punctuation text throughout the document list, then a
little loop to clean up the Empty documents scattered through, like so:

-- file: ch11/QC.hs
prop_punctuate' s xs = punctuate s xs == combine (intersperse s xs)

where
combine [] =[]
combine [x] = [x]

combine (x:Empty:ys) = x : combine ys
combine (Empty:y:ys) =y : combine ys
combine (x:y:ys) = x “Concat™ y : combine ys

Running this in GHCi, we can confirm the result. It is reassuring to have the test frame-
work spot the flaws in our reasoning about the code — exactly what we're looking for:

ghci> quickCheck prop_punctuate’
00, passed 100 tests.

Putting it altogether

We can put all these tests together in a single file, and run them simply by using one
of QuickCheck's driver functions. Several exist, including elaborate parallel ones. The
basic batch driver is often good enough, however. All we need do is set up some default
test parameters, and then list the functions we want to test:

-- file: ch11/Run.hs

import Prettify2
import Test.QuickCheck.Batch

options = TestOptions
{ no_of tests 200
, length of tests =1
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, debug_tests = False }

main = do
runTests "simple" options
[ run prop_empty id
run prop_char
run prop_text
run prop_line
run prop_double

e v e

runTests "complex" options
[ run prop_hcat
, run prop_puncutate’

]

We've structured the code here as a separate, standalone test script, with instances and
properties in their own file, separate to the library source. This is typical for library
projects, where the tests are kept apart from the library itself, and import the library
via the module system. The test script can then be compiled and executed:

$ ghc --make Run.hs

$ ./Run
simple : ..... (1000)
complex : .. (400)

A total of 1400 individual tests were created, which is comforting. We can increase the
depth easily enough, but to find out exactly how well the code is being tested we should
turn to the built in code coverage tool, HPC, which can state precisely what is going on.

Measuring test coverage with HPC

HPC (Haskell Program Coverage) is an extension to the compiler to observe what parts
of the code were actually executed during a given program run. This is useful in the
context of testing, as it lets us observe precisely which functions, branches and expres-
sions were evaluated. The result is precise knowledge about the percent of code tested,
that's easy to obtain. HPC comes with a simple utility to generate useful graphs of
program coverage, making it easy to zoom in on weak spots in the test suite.

To obtain test coverage data, all we need to do is add the -fhpc flag to the command
line, when compiling the tests:

$ ghc -fhpc Run.hs --make

Then run the tests as normal;

$ ./Run
simple : ..... (1000)
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complex : .. (400)

During the test run the trace of the program is written to .tix and .mix files in the current
directory. Afterwards, these files are used by the command line tool, hpc, to display
various statistics about what happened. The basic interface is textual. To begin, we can
get a summary of the code tested during the run using the report flag to hpc. We'll
exclude the test programs themselves, (using the --exclude flag), so as to concentrate
only on code in the pretty printer library. Entering the following into the console:

$ hpc report Run --exclude=Main --exclude=QC
18% expressions used (30/158)
0% boolean coverage (0/3)
0% guards (0/3), 3 unevaluated
100% 'if' conditions (0/0)
100% qualifiers (0/0)
23% alternatives used (8/34)
0% local declarations used (0/4)
42% top-level declarations used (9/21)

we see that, on the last line, 42% of top level definitions were evaluated during the test
run. Not too bad for a first attempt. As we test more and more functions from the
library, this figure will rise. The textual version is useful for a quick summary, but to
really see what's going on it is best to look at the marked up output. To generate this,
use the markup flag instead:

$ hpc markup Run --exclude=Main --exclude=QC

This will generate one html file for each Haskell source file, and some index files.
Loading the file hpc_index.html into a browser, we can see some pretty graphs of the
code coverage:

Top Level Definitions

Alte

module
- % covered / total

Yo

23%

§/34

[ |

module Prettifyd 42%|9/21 :—
Program Coverage Total |42%|(9/21 | T

| 23%

&/34

[ ]

Not too bad. Clicking through to the pretty module itself, we see the actual source of
the program, marked up in bold yellow for code that wasn't tested, and code that was
executed simply bold.
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data Doc = Empty

| Char Char

| Text String

| Line

| Concat Doc Doc

| Union Doc Doc
deriving (Show,Eq)

{-- /snippet Doc --}

instance Monoid Doc where

mempty = empty
mappend = (<>)
{-- snippet append --}
empty :: Doc
(«=) :: Doc -= Doc -=> Doc

{-- /snippet append --}

empty = Empty

Empty == y =y
X <= Empty = x
X <=y =x Concat” y

char :: Char -= Doc
char ¢ = Char ¢

We forgot to test the Monoid instance, for example, and some of the more complicated
functions. HPC helps keep our test suite honest. Let's add a test for the typeclass in-
stance of Monoid, the class of types that support appending and empty elements:
-- file: ch11/QC.hs
prop_mempty id x =
mempty “mappend’ x == x
&8
x “mappend’ mempty == (x :: Doc)

Running this property in ghci, to check it is correct:

Measuring test coverage with HPC | 271



ghci> quickCheck prop_mempty_id
00, passed 100 tests.

We can now recompile and run the test driver. It is important to remove the old .tix
file first though, or an error will occur as HPC tries to combine the statistics from

separate runs:

$ ghc -fhpc Run.hs --make -no-recomp
$ ./Run
Hpc failure: inconsistent number of tick boxes
(perhaps remove Run.tix file?)
$ m *.tix
$ ./Run
simple : .....
complex : ...

(1000)

(600)

Another two hundred tests were added to the suite, and our coverage statistics improves

to 52 percent of the code base:

module

Top Level Definitions

%

covered [/ total %

module Prettify2

52%

11/21

[ T2 3%

[ 4l

Program Coverage Total

02%

11721

[ 23%

-y

HPC ensures that we're honest in our testing, as anything less than 100% coverage will
be pointed out in glaring color. In particular, it ensures the programmer has to think
about error cases, and complicated branches with obscure conditions, all forms of code
smell. When combined with a saturating test generation system, like QuickCheck's,
testing becomes a rewarding activity, and a core part of Haskell development.
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CHAPTER 12
Barcode recognition

In this chapter, we'll make use of the image parsing library we developed in Chap-
ter 10 to build a barcode recognition application. Given a picture of the back of a book
taken with a camera phone, we could use this to extract its ISBN number.

A little bit about barcodes

The vast majority of packaged and mass-produced consumer goods sold have a barcode
somewhere on them. Although there are dozens of barcode systems used across a va-
riety specialised domains, consumer products typically use either UPC-A or EAN-13.
UPC-A was developed in the United States, while EAN-13 is European in origin.

EAN-13 was developed after UPC-A, and is a superset of UPC-A. (In fact, UPC-A has
been officially declared obsolete since 2005, though it's still widely used within the
United States.) Any software or hardware that can understand EAN-13 barcodes will
automatically handle UPC-A barcodes. This neatly reduces our descriptive problem to
one standard.

As the name suggests, EAN-13 describes a 13-digit sequence, which is broken into four
groups.

* The first two digits describe the number system. This can either indicate the na-
tionality of the manufacturer, or describe one of a few other categories, such as
ISBN (book identifier) numbers.

* The next five digits are a manufacturer ID, assigned by a country's numbering
authority.

* The five digits that follow are a product ID, assigned by the manufacturer. (Smaller
manufacturers may have a longer manufacturer ID and shorter product ID, but
they still add up to ten digits.)

* Thelast digit is a check digit, allowing a scanner to validate the digit string it scans.
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The only way in which an EAN-13 barcode differs from a UPC-A barcode is that the
latter uses a single digit to represent its number system. EAN-13 barcodes retain UPC-
A compatibility by setting the first number system digit to zero.

EAN-13 encoding

Before we worry about decoding an EAN-13 barcode, we need to understand how they
are encoded. The system used by EAN-13 is a little involved. We start by computing
the check digit, which is the last digit of a string.

-- file: ch12/Barcode.hs
checkDigit :: (Integral a) => [a] -> a
checkDigit ds = 10 - (sum products “mod’ 10)
where products = mapEveryOther (*3) (reverse ds)

mapEveryOther :: (a -> a) -> [a] -> [a]
mapEveryOther f = zipWith ($) (cycle [f,id])

This is one of those algorithms that is more easily understood via the code than a verbal
description. The computation proceeds from the right of the string. Each successive
digit is either multiplied by three or left alone (the cycle function repeats its input list
infinitely). The check digit is the difference between their sum, modulo ten, and the
number ten.

Abarcode is a series of fixed-width bars, where black represents a binary “one” bit, and
white a “zero”. A run of the same digits thus looks like a thicker bar.

The sequence of bits in a barcode is as follows.

* The leading guard sequence, encoded as 101.
* A group of six digits, each seven bits wide.

* Another guard sequence, encoded as 01010.
* A group of six more digits.

* The trailing guard sequence, encoded as 101.

The digits in the left and right groups have separate encodings. On the left, digits are
encoded with parity bits. The parity bits encode the 13th digit of the barcode.

Introducing arrays

Before we continue, here are all of the imports that we will be using in the remainder
of this chapter.
-- file: ch12/Barcode.hs

import Data.Array (Array(..), (!), bounds, elems, indices,
ixmap, listArray)

import Control.Applicative ((<$>))
import Control.Monad (forM )
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import Data.Char (digitToInt)

import Data.Ix (Ix(..))

import Data.list (foldl', group, sort, sortBy, tails)
import Data.Maybe (catMaybes, listToMaybe)

import Data.Ratio (Ratio)

import Data.Word (Word8)

import System.Environment (getArgs)

import qualified Data.ByteString.lLazy.Char8 as L
import qualified Data.Map as M

import Parse -- from chapter 11

The barcode encoding process can largely be table-driven, in which we use small tables
of bit patterns to decide how to encode each digit. Haskell's bread-and-butter data
types, lists and tuples, are not well suited to use for tables whose elements may be
accessed randomly. A list has to be traversed linearly to reach the kth element. A tuple
doesn't have this problem, but Haskell's type system makes it difficult to write a func-
tion that takes a tuple and an element offset and returns the element at that offset within
the tuple. (We'll explore why in the exercises below.)

The usual data type for constant-time random access is of course the array. Haskell
provides several array data types. We'll thus represent our encoding tables as arrays of
strings.

The simplest array type is in the Data.Array module, which we're using here. This
presents arrays that can contain values of any Haskell type. Like other common Haskell
types, these arrays are immutable. An immutable array is populated with values just
once, when it is created. Its contents cannot subsequently be modified. (The standard
libraries also provide other array types, some of which are mutable, but we won't cover
those for a while.)

-- file: chi2/Barcode.hs

leftoddList = ["0001101", "0011001", "0010011", "0111101", "0100011",
"0110001", "0101111", "0111011", "0110111", "0001011"]

rightlist = map complement <$> leftOddList
where complement '0' = '1'
complement '1' = '0'

leftEvenList = map reverse rightlist

paritylist = ["111111", "110100", "110010", "110001", "101100",
"100110", "100011", "101010", "101001", "100101"]

listToArray :: [a] -> Array Int a
listToArray xs = listArray (0,1-1) xs
where 1 = length xs

leftOddCodes, leftEvenCodes, rightCodes, parityCodes :: Array Int String

leftOddCodes = listToArray leftOddList
leftEvenCodes = listToArray leftEvenList
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rightCodes = listToArray rightlist
parityCodes = listToArray paritylist

The Data.Array module's 1istArray function populates an array from a list. It takes as
its first parameter the bounds of the array to create; the second is the values with which
to populate it.

Anunusual feature of the Array type is that its type is parameterised over both the data
it contains and the index type. For example, the type of a one-dimensional array of
String is Array Int String, but a two-dimensional array would have the type Array
(Int,Int) String.

ghci> :m +Data.Array

ghci> :type listArray
listArray :: (Ix i) => (i, i) -> [e] -> Array i e

We can construct an array easily.

ghci> listArray (0,2) "foo"
array (0,2) [(0,"f"),(1,"0"),(2,'0")]

Notice that we have to specify the lower and upper bounds of the array. These bounds
are inclusive, so an array from 0 to 2 has elements 0, 1, and 2.
ghci> listArray (0,3) [True,False,False,True,False]
array (0,3) [(0,True),(1,False),(2,False),(3,True)]
ghci> listArray (0,10) "too short"
array (0,10) [(0,'t"),(1,'0"),(2,'0"),(3," "),(4,'s"),(5,'h"),(6,'0"),(7,'r"),(8,"t"), (9,*** Exception:

Once an array is constructed, we can use the (!) operator to access its elements by
index.

ghci> let a = listArray (0,14) ['a’..]
ghci> a ! 2

c
ghci> a ! 100
*** Exception: Error in array index

Since the array construction function lets us specify the bounds of an array, we don't
have to use the zero-based array indexing familiar to C programmers. We can choose
whatever bounds are convenient for our purposes.

ghci> let a = listArray (-9,5) ['a'..]

ghci> a ! (-2)

The
The index type can be any member of the Ix type. This lets us use, for example, Char
as the index type.

ghci> let a = listArray ('a', 'h') [97..]

ghci> a ! ‘e’

101
To create a higher-dimensioned array, we use a tuple of Ix instances as the index type.
The Prelude makes tuples of up to five elements members of the Ix class.